Article (Published Version)

Total Page:16

File Type:pdf, Size:1020Kb

Article (Published Version) Article Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling CHIARADIA, Massimo, et al. Abstract In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geo- chemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt–mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geo- chemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW–SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), andback-arc (Sumaco) chains. All rocks display typical sub- duction-related [...] Reference CHIARADIA, Massimo, et al. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology, 2009, vol. 158, no. 5, p. 563-588 DOI : 10.1007/s00410-009-0397-2 Available at: http://archive-ouverte.unige.ch/unige:18901 Disclaimer: layout of this document may differ from the published version. 1 / 1 Contrib Mineral Petrol (2009) 158:563–588 DOI 10.1007/s00410-009-0397-2 ORIGINAL PAPER Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling Massimo Chiaradia Æ Othmar Mu¨ntener Æ Bernardo Beate Æ Denis Fontignie Received: 23 September 2008 / Accepted: 25 February 2009 / Published online: 14 March 2009 Ó Springer-Verlag 2009 Abstract In the Northern Andes of Ecuador, a broad back-arc (Sumaco) chains. All rocks display typical sub- Quaternary volcanic arc with significant across-arc geo- duction-related geochemical signatures, such as Nb and Ta chemical changes sits upon continental crust consisting of negative anomalies and LILE enrichment. They show a accreted oceanic and continental terranes. Quaternary relative depletion of fluid-mobile elements and a general volcanic centers occur, from west to east, along the increase in incompatible elements from the front to the Western Cordillera (frontal arc), in the Inter-Andean back-arc suggesting derivation from progressively lower Depression and along the Eastern Cordillera (main arc), degrees of partial melting of the mantle wedge induced by and in the Sub-Andean Zone (back-arc). The adakite-like decreasing amounts of fluids released from the slab. We signatures of the frontal and main arc volcanoes have been observe widespread petrographic evidence of interaction of interpreted either as the result of slab melting plus primary melts with mafic xenoliths as well as with clino- subsequent slab melt–mantle interactions or of lower pyroxene- and/or amphibole-bearing cumulates and of crustal melting, fractional crystallization, and assimilation magma mixing at all frontal and main arc volcanic centers. processes. In this paper, we present petrographic, geo- Within each volcanic center, rocks display correlations chemical, and isotopic (Sr, Nd, Pb) data on dominantly between evolution indices and radiogenic isotopes, andesitic to dacitic volcanic rocks as well as crustal although absolute variations of radiogenic isotopes are xenolith and cumulate samples from five volcanic centers small and their values are overall rather primitive (e.g., 87 86 (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a eNd =?1.5 to ?6, Sr/ Sr = 0.7040–0.70435). Rare NW–SE transect at about 0° latitude and encompassing the earth element patterns are characterized by variably frac- frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and tionated light to heavy REE (La/YbN = 5.7–34) and by the absence of Eu negative anomalies suggesting evolution of these rocks with limited plagioclase fractionation. We Communicated by T. L. Grove. interpret the petrographic, geochemical, and isotopic data as indicating open-system evolution at all volcanic centers Electronic supplementary material The online version of this characterized by fractional crystallization and magma article (doi:10.1007/s00410-009-0397-2) contains supplementary mixing processes at different lower- to mid-crustal levels material, which is available to authorized users. as well as by assimilation of mafic lower crust and/or its M. Chiaradia (&) Á D. Fontignie partial melts. Thus, we propose that the adakite-like sig- Department of Mineralogy, University of Geneva, Rue des natures of Ecuadorian rocks (e.g., high Sr/Y and La/Yb Maraıˆchers 13, 1205 Geneva, Switzerland values) are primarily the result of lower- to mid-crustal e-mail: [email protected] processing of mantle-derived melts, rather than of slab O. Mu¨ntener melts and slab melt–mantle interactions. The isotopic sig- Institut de Mine´ralogie et Ge´ochimie, Universite´ de Lausanne, natures of the least evolved adakite-like rocks of the active Anthropole, 1015 Lausanne, Switzerland and recent volcanoes are the same as those of Tertiary B. Beate ’’normal’’ calc-alkaline magmatic rocks of Ecuador sug- Escuela Politecnica Nacional, Quito, Ecuador gesting that the source of the magma did not change 123 564 Contrib Mineral Petrol (2009) 158:563–588 through time. What changed was the depth of magmatic Martin 1999; Smithies 2000; Kamber et al. 2002; Condie evolution, probably as a consequence of increased com- 2005; Martin et al. 2005). pression induced by the stronger coupling between the In a series of recent papers (e.g., Bourdon et al. 2002, subducting and overriding plates associated with subduc- 2003; Samaniego et al. 2002; Hidalgo et al. 2007; Hoffer tion of the aseismic Carnegie Ridge. et al. 2008), the adakite-like rocks of Ecuador have been considered the result of slab melting, but other works on Keywords Ecuador Á Quaternary Á Volcanism Á the same rocks suggest the possible role played by mag- Igneous fractionation Á Adakite Á Radiogenic isotopes matic processes at lower crustal levels (Kilian et al. 1995; Arculus et al. 1999; Monzier et al. 1999; Garrison and Davidson 2003; Chiaradia et al. 2004a; Bryant et al. 2006; Introduction Garrison et al. 2006), a petrogenetic process invoked also to explain the geochemical signatures of southern Colom- The Andean Cordillera is one of the best examples of bian volcanoes (e.g., Droux and Delaloye 1996; Calvache active continental arc magmatism on Earth. Along-arc and Williams 1997). variations in crustal thickness and composition as well as in In this study we report new petrographic, geochemical subduction styles produce magmatic rocks that differ in and isotopic (Pb, Sr, Nd) data of volcanic rocks from a geochemical and isotopic characteristics and indicate that transect across the Ecuadorian arc between latitudes various sources have contributed to their origin (e.g., James 0°300N and 0°300S including Quaternary volcanic centers 1982; Thorpe et al. 1983; Harmon et al. 1984). of the frontal arc (Pululagua, Pichincha), main arc (Cha- The Northern Andes of Ecuador are particularly inter- cana and Ilalo), and back-arc (Sumaco) (Fig. 1). Our new esting because a broad active volcanic arc has developed data show that, although slab melt metasomatism of the upon a crust consisting of both oceanic and continental mantle wedge cannot be ruled out, the observed adakite- accreted terranes (e.g., Feininger 1987; Litherland et al. like signatures of the volcanic rocks of Ecuador are best 1994), which allows evaluation of magma interaction with explained as the result of high-pressure fractionation of different crust types, and because of the occurrence of mantle-derived melts in the stability field of amphi- Quaternary magmatic rocks with adakite-like features (e.g., bole ± garnet, accompanied by assimilation of mafic lower Bourdon et al. 2003). Adakites were initially defined by crust and/or mixing with its partial melting products. Defant and Drummond (1990), following the study of Kay (1978), as magmatic rocks with distinctive geochemical signatures (e.g., Sr [ 400 ppm, Y B 18 ppm, Yb B Geological and geotectonic setting 1.8 ppm, La/YbN [ 10) derived from melting of subducted oceanic crust and many studies have applied this petro- Ecuador consists of six main physiographic domains (from genetic model to arc rocks with adakite-like signatures west to east: Coastal Plain, Western Cordillera, Inter- (e.g., Kay et al. 1993; Yogodzinski et al. 1995; Stern and Andean Depression, Eastern Cordillera, Sub-Andean Zone, Kilian 1996). However, it has also been proposed that the Amazon Basin), the four westernmost of which roughly same geochemical signatures of adakites can be formed coincide with proposed terranes of both continental and through other processes, such as partial melting of a mafic oceanic affinity (Fig. 1a, b). These terranes were accreted lower crust (e.g., Kay et al. 1987; Hildreth and Moorbath to the continental margin (Sub-Andean Zone and Amazon 1988; Atherton and Petford 1993) or high-pressure crys- Basin, Fig. 1b) between the Late Jurassic and the Late tallization of hydrous magmas (Mu¨ntener et al. 2001; Cretaceous (Feininger 1987; Megard 1989; Jaillard et al. Mu¨ntener and Ulmer 2006; Macpherson et al. 2006; Rod- 1990, 1997; Aspden and Litherland 1992; Litherland et al. rı´guez et al. 2007; Alonso-Perez et al. 2009). As pointed 1994; Kerr et al. 1997; Reynaud et al. 1999; Hughes and out by Garrison and Davidson (2003), among others, Pilatasig 2002; Mamberti et al. 2003; Kerr and Tarney magmatic rocks with adakite-like signatures can be any 2005; Vallejo et al. 2006). Geophysical (Feininger and rock that has formed from a basaltic protolith under pH2O– Seguin 1983) and geochemical (e.g., Mamberti et al. 2003) T conditions in which plagioclase is not stable and garnet data indicate the existence of an oceanic plateau basement (and/or amphibole) are stable.
Recommended publications
  • Plant Diversity and Composition Changes Along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon
    diversity Article Plant Diversity and Composition Changes along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon Pablo Lozano 1,*, Omar Cabrera 2 , Gwendolyn Peyre 3 , Antoine Cleef 4 and Theofilos Toulkeridis 5 1 1 Herbario ECUAMZ, Universidad Estatal Amazónica, Km 2 2 vía Puyo Tena, Paso Lateral, 160-150 Puyo, Ecuador 2 Dpto. de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110-104 Loja, Ecuador; [email protected] 3 Dpto. de Ingeniería Civil y Ambiental, Universidad de los Andes, Cra. 1E No. 19a-40, 111711 Bogotá, Colombia; [email protected] 4 IBED, Paleoecology & Landscape ecology, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, The Netherlands; [email protected] 5 Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, P.O.Box, 171-5-231B Sangolquí, Ecuador; [email protected] * Correspondence: [email protected]; Tel.: +593-961-162-250 Received: 29 April 2020; Accepted: 29 May 2020; Published: 8 June 2020 Abstract: The paramo is a unique and severely threatened ecosystem scattered in the high northern Andes of South America. However, several further, extra-Andean paramos exist, of which a particular case is situated on the active volcano Sumaco, in the northwestern Amazon Basin of Ecuador. We have set an elevational gradient of 600 m (3200–3800 m a.s.l.) and sampled a total of 21 vegetation plots, using the phytosociological method. All vascular plants encountered were typified by their taxonomy, life form and phytogeographic origin. In order to determine if plots may be ensembled into vegetation units and understand what the main environmental factors shaping this pattern are, a non-metric multidimensional scaling (NMDS) analysis was performed.
    [Show full text]
  • Relationship Between Static Stress Change and Volcanism. How and If Tectonic Earthquake Could Influence Volcanic Activity
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2014 RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR Daniele Alami Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons, and the Volcanology Commons Copyright 2014 Daniele Alami Recommended Citation Alami, Daniele, "RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR", Master's report, Michigan Technological University, 2014. https://doi.org/10.37099/mtu.dc.etds/770 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons, and the Volcanology Commons RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR. By Daniele Alami A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © 2013 Daniele Alami This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology Department of Geological & Mining Engineering & Sciences Report Co-Advisor: Gregory P.Waite Report Co-Advisor: Alessandro Tibaldi Committee Member: Simon Carn Department Chair: John Gierke 1 2 L'infinito non esiste, è solo un numero grande, e l'unico vero cuore è al centro della Terra. Vai davanti a un vulcano e poi dimmi, come ti senti? (Filippo Timi) 3 Università degli studi di Milano-Bicocca Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di Scienze e Tecnologie Geologiche Relationship between static stress changes and volcanism.
    [Show full text]
  • 1. GENERAL INFORMATION 1.1. About Ecuador
    2nd Meeting of the ITU Centres of Excellence (CoE) Steering Committee for the Americas Region From 11 to 12 December 2019 Quito, Ecuador 1. GENERAL INFORMATION 1.1. About Ecuador: Ecuador is the second smallest country in South America. Nevertheless, it has a diversity of landscapes to explore. The Pacific Coast stretches along the western edge of Ecuador, while the Highlands or the "Sierra" is centralized in the country, stretching all the way from the North to the South. The East is mainly composed of Amazonian rainforest; and, the "Island Region" contains the Galapagos Islands, volcanic islands located in the Pacific Ocean about 960 kilometres from the Ecuadorian coast. The unique wildlife located in the archipelago inspired the British naturalist Charles Darwin in the development of the theory of evolution. Due to the proximity of the country with the Equator and its geographic diversity, Ecuador is an ideal destination for lovers of nature, orchids and exotic birds and jungle plants, strange insects, wastelands hit by the wind, tropical forests and intrepid animals. Due to the proximity of the country with the Equator and its geographic diversity, Ecuador is an ideal destination for nature lovers, with orchids and exotic birds, jungle plants and strange insects, moorlands hit by the wind, tropical forests and intrepid animals. In addition to the natural richness, Ecuador has a recognized cultural heritage deriving mainly from the traditions and history of their diverse peoples and nationalities, an integral part of this Andean country. As a result of its small size (256.370 square kilometres), all its regions can be easily visited in a short period of time.
    [Show full text]
  • COV4 Meeting Schedule Monday, 23 January, 2006
    COV4 Meeting Schedule Monday, 23 January, 2006 Sala 1 (large)† 8H15 Welcoming Statements 8H30 Invited Speaker M. Hall: LIVING WITH VOLCANOES 9H00 - 9H30 Invited Speaker A. Lavell: SOCIETY AND RISK: RISK MANAGEMENT AND VOLCANIC HAZARDS 9H30 - 10H00 Plenary Symposium IV-B: Monitoring Volcanoes J. EWERT: ASSESSING VOLCANIC THREAT AND PRIORITIZING VOLCANO MONITORING IN THE UNITED STATES 10H00 - Plenary Symposium II: Ash Falls and Aerosols 10H30 W. Rose: ASH-FALL AND AEROSOLS, AN OVERVIEW 10H30 - 11H00 Coffee Break Sala 1 (large) Sala 2 (medium) IV-B: Monitoring Volcanoes II: Ash Falls and Aerosols Chairs: J. Ewert, A. García, H. Kumagai & J. Chairs: J.-L. Le Pennec, C. Connor, T. Johnson Casadevall, D. Johnston & D. Schneider 11H00 - S. Carn: MONITORING GLOBAL VOLCANIC A. Neri: ASSESSING ASH FALL HAZARD 11H20 DEGASSING WITH OMI FROM WEAK EXPLOSIVE PLUMES 11H20 - C. Oppenheimer: NEW DEVELOPMENTS IN C. Bonadonna: PROBABILISTIC MODELLING 11H40 VOLCANIC GAS SURVEILLANCE OF TEPHRA DISPERSON 11H40 - B. Galle: DEVELOPMENT OF OPTICAL B. Houghton: PROXIMAL TEPHRA HAZARDS: 12H00 REMOTE SENSING INSTRUMENTS FOR RECENT ERUPTION STUDIES APPLIED TO VOLCANOLOGICAL APPLICATIONS VOLCANIC RISK IN THE AUCKLAND VOLCANIC FIELD, NEW ZEALAND 12H00-12H20 F. Donnadieu: ERUPTION DYNAMICS OF P. Baxter: GRAIN SIZE ANALYSIS OF ARENAL VOLCANO, COSTA RICA: INSIGHTS VOLCANIC ASH FOR THE ASSESSMENT OF FROM DOPPLER RADAR AND SEISMIC HEALTH HAZARD MEASUREMENTS 12H20 - 14H00 Lunch in the Centro Cultural Metropolitano- Plaza Grande IV-B: Monitoring-Cont. II: Ash- Cont. 14H00- A. Gerst: REAL-TIME 4D MONITORING OF D. Andronico: ASH EMISSIONS AT THE 14H20 ERUPTIVE PROCESSES WITH DOPPLER SUMMIT OF ETNA DURING THE 2004-05 RADARS- A NEW TOOL FOR HAZARDS FLANK ERUPTION MITIGATION AND VOLCANO SCIENCE 14H20-14H40 M.
    [Show full text]
  • Ecuador Volcano
    ECUADOR: VOLCANO 18 October 1999 Information Bulletin N° 02 The Disaster Just two weeks ago, the International Federation issued an Information Bulletin after authorities in Ecuador declared an orange alert regarding increased seismic activity around the Guagua Pichincha volcano. Now, another orange alert has been declared for an even more dangerous volcano, Tungurahua, located 128 km from the capital city, Quito. Of the five active volcanoes in Ecuador - Sumaco, Reventador, Sangay, Guagua Pichincha and Tungurahua - the last two represent a major concern for local authorities, since they could have a direct impact on the population in their vicinity. Tungurahua is classified as a pyroclastic volcano, and eruptions are characterised by violent displacements of rock, ash and lava. According to the head of vulcanology of the Civil Defense, the probability of an eruption is 80%. This means that the country is now threatened by two volcanic situations both of which have a high possibility of eruption within the next two months. In the case of Tungurahua particularly, such an eruption would threaten a number of large towns and many smaller communities. Ecuador’s Geophysics Institute reported on 16 October that over 10,000 of the tourist city of Baños’s 20,000 citizens and their neighbors have been evacuated. The increasing probability of an eruption has been accompanied by permanent changes in the cone of the volcano, and the presence of pyroclastic material, daily emission of ash and mudslides. Further accumulation of lava and mud will create serious risks of larger mudslides. There is already considerable damage to agriculture with some loss of livestock.
    [Show full text]
  • Hoja Consolidado Mensual Barras 2019 Nacionalidad Enero Febrero Extranjero Nacional
    Número de Visitas 3 3 4 1 1 2 2 0 5 0 5 0 0 5 0 5 K K K K K K K K K P.N. MACHALILLA 10.490 6.549 R.P.F.M.C PUNTILLA DE SANTA ELENA 18.942 4.298 PARQUE NACIONAL COTACACHI CAYAP.. 11.623 4.121 P.N. COTOPAXI 11.344 3.601 R.G. PULULAHUA 6.443 6.610 A.N.R. ISLA SANTAY 9.316 R.P.F. CHIMBORAZO 5.780 2.218 R.E. LOS ILINIZAS 4.117 P.N. CAJAS 3.516 3.019 R.E. ANTISANA 4.058 A.N.R. EL BOLICHE 3.112 P.N. CAYAMBE-COCA R.V.S. MANGLARES EL MORRO R.P.F. CUYABENO e P.N. SANGAY n e r R.V.S. PASOCHOA o P.N. LLANGANATES H o P.N. PODOCARPUS j a P.N. YASUNI C o R.B. LIMONCOCHA n s o l REFUGIO DE VIDA SILVESTRE Y MARIN.. i d a R.E. EL ANGEL d o R.V.S. ISLA CORAZON Y FRAGATA M e R.E. MACHE-CHINDUL n s P.N. YACURI u a l RESERVA ECOLOGICA ARENILLAS B a R.E. MANGLARES CHURUTE r r a RESERVA BIOLÓGICA COLONSO CHALU.. 11 s P.N. SUMACO R.B. EL QUIMI P.N. MACHALILLA 5.604 3.965 R.P.F.M.C PUNTILLA DE SANTA ELENA 20.826 PARQUE NACIONAL COTACACHI CAYAP.. 11.730 3.601 P.N. COTOPAXI 9.473 3.834 R.G. PULULAHUA 7.784 2.682 A.N.R.
    [Show full text]
  • Antisana Volcano: a Representative Andesitic Volcano of the Eastern Cordillera of Ecuador: Petrography, Chemistry, Tephra and Glacial Stratigraphy
    Journal of South American Earth Sciences 73 (2017) 50e64 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Antisana volcano: A representative andesitic volcano of the eastern cordillera of Ecuador: Petrography, chemistry, tephra and glacial stratigraphy * Minard L. Hall a, , Patricia A. Mothes a, Pablo Samaniego b, Annemarie Militzer d, Bernardo Beate c, Patricio Ramon a, Claude Robin b a Instituto Geofísico, Escuela Politecnica Nacional, Casilla 1701-2759, Quito, Ecuador b Laboratoire Magmas et Volcans, Universite Blaise Pascal - CNRS - IRD, Campus Universitaire des Cezeaux, 6 Avenue Blaise Pascal, 63178, Aubiere, France c Dept. Geología, Escuela Politecnica Nacional, Casilla 1701-2759, Quito, Ecuador d Institute for Geosciences, Johannes Gutenberg Universitat€ Mainz, Germany article info abstract Article history: Antisana volcano is representative of many active andesitic strato-volcanoes of Pleistocene age in Received 28 May 2016 Ecuador's Eastern Cordillera. This study represents the first modern geological and volcanological Received in revised form investigation of Antisana since the late 1890's; it also summarizes the present geochemical under- 2 November 2016 standing of its genesis. The volcano's development includes the formation and destruction of two older Accepted 26 November 2016 edifices (Antisana I and II) during some 400 þ ka. Antisana II suffered a sector collapse about 15,000 Available online 29 November 2016 years ago which was followed by the birth and growth of Antisana III. During its short life Antisana III has generated 50 eruptions of small to medium intensity, often associated with andesitic to dacitic lava Keywords: fl Long-lived evolving andesitic volcanism ows and tephra, as well as with late Pleistocene and Holocene glacial advances.
    [Show full text]
  • 20 New Candidates (For Evaluation in 2020)
    20 New candidates (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions do Sul -Serido China: -Longyan -Xingyi DPR Korea: -Mount Paektu Ecuador: -Napo Sumaco -Tungurahua France: -Armorique -Normandie-Maine Germany: -Ries Iran: -Aras Jordan: -Mujib Mexico : -Huasteca Potosina New Zealand: -Waitaki Whitestone Poland : -Land of Extinct Volcanoes Sweden: -Platåbergen Thailand: -Khorat UK: -Mourne Gullion Strangford Vietnam: -Ly Son-Sa Huynh 3 Extension requests < 10 %: Czech Republic : -Boheminan Paradise Germany: -Thuringia Inselsberg – Drei Gleichen -Vulkaneifel Disclaimer The Secretariat of UNESCO does not represent or endorse the accuracy of reliability of any advice, opinion, statement or other information or documentation provided by the States Parties to the Secretariat of UNESCO. The publication of any such advice, opinion, statement or other information documentation on the website and/or on working documents also does not imply the expression of any opinion whatsoever on the part of the Secretariat of UNESCO concerning the legal status of any country, territory, city or area or of its boundaries. Applicant UNESCO Global Geopark Torotoro, Bolivia Geographical and geological summary Location of the Torotoro Andean Geopark, Aspiring Unesco, in Central Bolivia, South America. Location of the Torotoro Andean Geopark, Aspiring Unesco, in Potosí Department, Bolivia. 1. Physical and human geography Aspiring Torotoro Andean Geopark, located in the Province Charcas, North of Potosí Department, Bolivia, has the same limits of the Municipality of Torotoro. The most used access occurs through the city of Cochabamba, whose distance is 134 km. From Potosí city, the distance is 552 km. The Torotoro's coordinates are 18°08'01"S and 65°45'47"W, and the area is 118,218 km².
    [Show full text]
  • Mojanda Volcanic Complex (Ecuador): Development of Two Adjacent Contemporaneous Volcanoes with Contrasting Eruptive Styles and Magmatic Suites
    IO, Ji~urnulofSouth Americun firth Sciences, Vol. Nos. 5-6. pp. 345-359. 1997 Pergamon O IYYX Elscvicr Sciencc Ltd. All rights rcservcd Printed in Great Britain 0895-981 1/Y8 $IY.(Xl to.00 PII:S0895-9811(97)00030-8 Mojanda volcanic complex (Ecuador): development of two adjacent contemporaneous volcanoes with contrasting eruptive styles and magmatic suites 132C.ROBIN*, 2M. HALL, 2M. JIMENEZ, 1,2M.MONZIER and 21? ESCOBAR 'ORSTOM, UR 14, A.P. 17-1 1-6596, Quito, Ecuador 21nstituto Geofisico, Escuela Politecnica Nacional, A.P. 17-01-2759, Quito, Ecuador Ahmt- In Ecuador, Volcan Mojanda, previously thought to be a single edifice, consists of two contemporaneous volcanoes, Mojanda and Fuya Fuya. Despite their proximity and contemporaneity,these volcanic centres continuously showed contrasting eruptive dynamics and geochemistry. Andesitic lava flows form the main part of basal Mojanda (Moj I). Following caldera collapse, a small andesitic stratocone (Moj II) was built, consisting mainly of basic andesite lava flows, scoria flow deposits and a thick summit series of vitric brec- cias. This cone was partly destroyed by phreatoplinian eruptions that led to the formation of a small, summit caldera. Fuya Fuya grew on the western flank of basal Mojanda and was contemporaneous with Mojahda II. Its activity began with andesitic and dacitic viscous lava flows and domes (FF I) and continued with a period of intense pyroclastic activity (FF II), during which two voluminous Plinian airfalls of rhyolitic pumice (RI and R2) were erupted. Later, the activity of Fuya Fuya became effusive with the building of an intermediate andesitic edifice, the San Bartolo cone (FF III).
    [Show full text]
  • A 3D Model of the Chachimbiro Geothermal System in Ecuador Using Petrel
    Orkustofnun, Grensasvegur 9, Reports 2016 IS-108 Reykjavik, Iceland Number 34 A 3D MODEL OF THE CHACHIMBIRO GEOTHERMAL SYSTEM IN ECUADOR USING PETREL Byron F. Pilicita Masabanda Corporación Eléctrica del Ecuador Unidad de Negocio Termopichincha Av. 6 de Diciembre N26-235 y Av. Orellana, Quito ECUADOR [email protected] ABSTRACT The Chachimbiro Geothermal System is the most important geothermal prospect in Ecuador. Various geothermal models have been presented based on geological, geochemical and geophysical data collected at different epochs. Currently the Chachimbiro prospect is ready to enter the exploration drilling phase. This is why it is important to identify the best drilling targets. The Petrel software allows the combination of all surface exploration data in order to identify different geothermal anomalies and create a 3D model to visualize all features of the system. This model uses lineaments as boundaries of the system based on structural mapping and locations of earthquake epicentres. The heat source is related to magma chambers that feed the main volcanic vent but is also controlled by faults, which influence possible up-flow. This up-flow is located beneath a cap rock (0-10 Ωm) and is related to a high resistivity core, which shows a concave shape (30-70 Ωm). The Na/K geothermometers show temperatures of around 240°C, however, the water in Chachimbiro has poor equilibrium with the rock. Resistivity analysis shows possible temperatures from 200 to 250°C, but this range of temperature does not represent the current temperature of the system. The origin of the fluids in Chachimbiro is meteoric based upon isotopic analysis.
    [Show full text]
  • The Stratigraphic Ano Structural Setting of the Potrerillos Porphyry Copper Oistrict, Northern Chile
    THE STRATIGRAPHIC ANO STRUCTURAL SETTING OF THE POTRERILLOS PORPHYRY COPPER OISTRICT, NORTHERN CHILE STEVEN F. OLSON BHP-Utah Minerals Internationallnc., 550 California SI., San Francisco, California 94104. U.S.A. ABSTRACT The Potrerillos district displays major facies boundaries, records changes in the compositions of magmas from Jurassic to Oligocene time, and provides evidence that a porphyry copper deposit and associated skarn (37 Ma) formed between Jurassic-Cretaceous and Paleocene extension and Miocene compressional deformation. Pre-Jurassic granitic and metamorphic basement is overlain by Jurassic-Lower Cretaceous marine sedimentary rocks and basal tic andesite lava flows, and by Paleocene-Eocene bimodal andesite-rhyolite continental volcanic rocks. The Potrerillos district strad­ dles major changes in facies and thicknesses of strata, between thicker, volcanic-dominant sections on the west and thinner, sedimentary-dominant sections on the east. The changes in thickness and facies are, in part, controlled by down-to-the-west normal/growth faults directly associated with the accumulation of the volcanic rocks. From Ju-assic through Cretaceous time, the district occupied a back-arc setting with respect to the principal magmatic arc. Mineralized and unmineralized porphyry plutons of granodiorite to quartz monzonite composition were emplaced along the Jurassic­ Cretaceous and Paleocene facies/thickness boundary between 40 and 32 Ma and represent the migration of the mag­ matic arc through the district. Some of the porphyry plutons were coeval with dacitic flow domes. Principal orientations of dikes ca. 32 Ma old indicate that the state of stress at this time was one of E-W compression (N-S extension). The major movement on reverse faults in Ihe district and surrounding region is constrained to have occurred between 32 and 12 Ma; some Eocene movement cannot be ruled out, however.
    [Show full text]
  • Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for Their Potential to Host Electricity-Grade Reservoirs
    DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Final Research Performance Report Federal Agency and Organization: DOE EERE – Geothermal Technologies Program Recipient Organization: ATLAS Geosciences Inc DUNS Number: 078451191 Recipient Address: 3372 Skyline View Dr Reno, NV 89509 Award Number: DE-EE0006725 Project Title: Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs Project Period: 10/1/14 – 10/31/15 Principal Investigator: Lisa Shevenell President [email protected] 775-240-7323 Report Submitted by: Lisa Shevenell Date of Report Submission: October 16, 2015 Reporting Period: September 1, 2014 through October 15, 2015 Report Frequency: Final Report Project Partners: Cumming Geoscience (William Cumming) – cost share partner GEODE (Glenn Melosh) – cost share partner University of Nevada, Reno (Nick Hinz) – cost share partner Western Washington University (Pete Stelling) – cost share partner DOE Project Team: DOE Contracting Officer – Laura Merrick DOE Project Officer – Eric Hass Project Monitor – Laura Garchar Signature_______________________________ Date____10/16/15_______________ *The Prime Recipient certifies that the information provided in this report is accurate and complete as of the date shown. Any errors or omissions discovered/identified at a later date will be duly reported to the funding agency. Page 1 of 152 DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Geothermal Potential of
    [Show full text]