The Dependence of the Evolution of Early-Type Galaxies on Their
Total Page:16
File Type:pdf, Size:1020Kb
The Dependence of the Evolution of Early{Type Galaxies on their Environment Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨aten der Georg-August-Universit¨atzu G¨ottingen vorgelegt von Alexander Fritz aus Wien, Osterreich¨ G¨ottingen2006 D7 Referent: Prof. Dr. K. J. Fricke Korreferent: Prof. Dr. W. Lauterborn Tag der m¨undlichen Pr¨ufung:17. Mai 2006 To my parents Contents 1 Introduction 1 1.1 Galaxy Formation Theory ................................. 2 1.2 Types of Galaxies ...................................... 4 1.2.1 Morphology ..................................... 4 1.2.2 Three{Dimensional Shape ............................. 6 1.2.3 Spectral Energy Distribution ........................... 7 1.2.4 Kinematics ..................................... 9 1.3 Scaling Relations ...................................... 10 1.3.1 The Colour-Magnitude Relation ......................... 10 1.3.2 The Kormendy Relation .............................. 11 1.3.3 The Fundamental Plane .............................. 12 1.4 Galaxy Evolution ...................................... 14 1.4.1 Theory meets Observations ............................ 14 1.4.2 High versus Low Densities ............................. 15 1.4.3 Elliptical and S0 Galaxies ............................. 16 1.5 Motivation and Overview ................................. 18 2 Sample Selection and Observations 21 2.1 Cluster Samples ....................................... 22 2.1.1 Calar Alto Observatory .............................. 22 2.1.2 MOSCA Configuration ............................... 22 2.1.3 Abell 2390 Cluster ................................. 23 2.1.4 Low-LX Clusters .................................. 24 2.1.5 Selection Criteria .................................. 24 2.1.6 Observations .................................... 28 2.2 Field Sample ........................................ 31 2.2.1 The FORS Deep Field ............................... 31 2.2.2 William Herschel Deep Field ........................... 32 2.2.3 FORS Configuration ................................ 32 2.2.4 Selection Criteria .................................. 33 2.2.5 Observations .................................... 35 i 3 Data Reduction 39 3.1 Bias Correction ....................................... 39 3.2 Cosmic Rays ........................................ 40 3.3 Distortion Correction .................................... 40 3.4 Flat{fielding ........................................ 42 3.5 Sky Subtraction ....................................... 42 3.6 Wavelength Calibration .................................. 43 3.7 Template Spectra ...................................... 44 4 Photometric Analysis 47 4.1 Photometry of Abell 2390 ................................. 49 4.1.1 Ground-based UBI Imaging ............................ 49 4.1.2 HST Photometry .................................. 51 4.2 Photometry of Low-LX Clusters ............................. 53 4.2.1 Low-LX Sample .................................. 53 4.2.2 Ground-based Photometry ............................ 54 4.2.3 HST Photometry .................................. 60 4.3 Surface Brightness Profile Fitting ............................. 60 4.3.1 Choice of Luminosity Profile ........................... 60 4.3.2 The Surface Brightness Models .......................... 62 4.3.3 Error Evaluation .................................. 66 4.3.4 Rest{Frame Properties ............................... 69 4.4 Morphologies ........................................ 70 4.4.1 Visual Classification ................................ 70 4.4.2 Quantitative Analysis ............................... 81 4.5 Luminosity Derivation ................................... 84 4.5.1 Apparent Magnitudes ............................... 85 4.5.2 Galactic Absorption ................................ 85 4.5.3 K-Correction .................................... 86 4.6 Luminosity Distribution and Errors ............................ 89 5 Kinematic Analysis 93 5.1 Galaxy Kinematics ..................................... 93 5.1.1 Kinematic Extraction Methods .......................... 93 5.2 The FCQ Algorithm .................................... 97 5.2.1 Error evaluation .................................. 99 5.3 Velocity Dispersions .................................... 99 5.3.1 Visual Inspection of σ ............................... 104 5.3.2 Aperture Correction ................................ 106 5.3.3 Comparison between Different Absorption Features ............... 107 5.3.4 Comparison between Repeat Observations .................... 111 5.3.5 Comparison between Different Extraction Procedures ............. 112 5.3.6 Comparison between Different Stellar Templates ................ 113 5.4 Distribution in σ ...................................... 114 5.4.1 Cluster Samples .................................. 114 ii 5.4.2 Field Sample .................................... 117 5.5 Redshift Distribution .................................... 118 5.6 Comparison between Rich Clusters ............................ 122 6 Galaxy Scaling Relations at z 0.2 127 6.1 The Local Reference ....................................∼ 127 6.2 The Faber{Jackson Relation ................................ 129 6.3 The Kormendy Relation .................................. 132 6.4 The Fundamental Plane .................................. 135 6.4.1 Elliptical versus S0 galaxies ............................ 142 6.5 M=L Evolution ....................................... 147 6.6 Comparison with Previous Studies ............................ 152 7 Environmental Effects on Galaxy Properties 155 7.1 The Faber{Jackson Relation ................................ 156 7.1.1 Luminosity Dependence .............................. 156 7.1.2 Mass Dependence .................................. 159 7.1.3 Radial Dependence ................................. 161 7.1.4 A Dependence on Galaxy Colours? ........................ 166 7.2 Stellar Population Ages .................................. 168 7.3 Further Discussion and Conclusions ........................... 173 8 Summary and Outlook 175 A Stellar Templates 179 Bibliography 185 iii Chapter 1: Introduction 1 Chapter 1 Introduction Since the last twenty years extragalactic astro- galaxies. The environment is suggested to play physics and cosmology have experienced an an important role to quantify and characterise enormous progress. The scientific knowledge the formation and evolution of galaxies as well and understanding of structure formation and as their overall properties. the chemical evolution within the cosmological Clusters of galaxies offer a unique laboratory framework is steadily growing. Thanks to the to study the physical properties of galaxies and development of high{speed parallel computer ar- their formation and evolution. The environment chitectures, high{resolution cosmological simula- of rich galaxy clusters, where degree of richness tions on various spatial scales of the Universe can refers to the overall mass density of a cluster be carried out. As a powerful complement, the (typically between 1014 to 1015 M ), provides construction of new 10 m-class telescopes such an ideal location to explore how the physical as the four ESO Very Large Telescopes (VLT, processes of galaxies are related to varying local Chile) and the twin telescopes at W. M. Keck number density, interactions with other galax- Observatory (Hawaii) provide new light on as- ies and exposure to a hot intra{cluster medium, trophysical issues from the observational side. in which the galaxies are embedded. In par- Even so, several topics remain puzzling. Within ticular for the most massive galaxies known, the standard paradigm of modern cosmology the early{type galaxies, the effects of environ- today, a hierarchical structure formation using ment on their formation and evolution can be Cold Dark Matter particles, a wealth of observa- revealed. Most previous studies concentrated on 1 tional evidences on large scales of >1 Mpc from the environments of galaxy clusters as they pro- the early cosmic beginning up to the Universe vide the opportunity to observe a large number as seen today can be modelled very successfully. of early{type galaxies with less amount of tele- On smaller scales in the order of kpc and below, scope time simultaneously using the technique of smaller galaxies with lower{masses are formed multi-object spectroscopy. first at early epochs, whereas larger high{mass Detailed investigations of galaxies in the nearby galaxies are assembled through merging and ac- Universe (z < 0:05) have revealed very com- cretion events of smaller sub{units over longer plex formation and evolution histories of gal- timescales up to the recent past. In this pic- axies, thereby involving merging events, bursts ture, different evolutionary paths are predicted of star formation, and morphological diversifi- for the densest environments of clusters of galax- cations. Nevertheless, the global properties of ies and the lowest densities of isolated individual the galaxies, which encompass luminosities, ro- 1One parsec (pc) corresponds to a distance of approx- tation velocities, velocity dispersions, sizes, and imately 3.26 light years or 3:086 1016 m. absorption line-strengths, obey very tight em- · 2 Chapter 1: Introduction pirical scaling relations, such as the Fundamen- 1.1 Galaxy Formation Theory tal Plane for early{type galaxies and the Tully{ Fisher relation for spiral galaxies. Such scaling Ever since galaxies have been classified into laws put strong constraints on theoretical gal- different morphological