Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World

Total Page:16

File Type:pdf, Size:1020Kb

Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World EN57CH20-Vincent ARI 31 October 2011 9:14 Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World Catherine Regnault-Roger,1 Charles Vincent,2,∗ and John Thor Arnason3 1UMR CNRS UPPA 5254 IPREM-EEM, Universite´ de Pau et des Pays de l’Adour, F64000 Pau, France; email: [email protected] 2Centre de Recherche et de Developpement´ en Horticulture, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, Quebec J3B 3E6, Canada; email: [email protected] 3Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; email: [email protected] Annu. Rev. Entomol. 2012. 57:405–24 Keywords First published online as a Review in Advance on biopesticide, botanical, terpenes, phenolics, repellent, fumigant September 19, 2011 The Annual Review of Entomology is online at Abstract ento.annualreviews.org In recent years, the use of essential oils (EOs) derived from aromatic plants This article’s doi: as low-risk insecticides has increased considerably owing to their popularity 10.1146/annurev-ento-120710-100554 with organic growers and environmentally conscious consumers. EOs are Copyright c 2012 by Annual Reviews. easily produced by steam distillation of plant material and contain many All rights reserved volatile, low-molecular-weight terpenes and phenolics. The major plant 0066-4170/12/0107-0405$20.00 Annu. Rev. Entomol. 2012.57:405-424. Downloaded from www.annualreviews.org families from which EOs are extracted include Myrtaceae, Lauraceae, Lami- ∗Corresponding author aceae, and Asteraceae. EOs have repellent, insecticidal, and growth-reducing effects on a variety of insects. They have been used effectively to control preharvest and postharvest phytophagous insects and as insect repellents for biting flies and for home and garden insects. The compounds exert their ac- tivities on insects through neurotoxic effects involving several mechanisms, notably through GABA, octopamine synapses, and the inhibition of acetyl- Access provided by Chinese Academy of Agricultural Sciences (Agricultural Information Institute) on 10/21/16. For personal use only. cholinesterase. With a few exceptions, their mammalian toxicity is low and environmental persistence is short. Registration has been the main bottle- neck in putting new products on the market, but more EOs have been ap- proved for use in the United States than elsewhere owing to reduced-risk processes for these materials. 405 EN57CH20-Vincent ARI 31 October 2011 9:14 INTRODUCTION Risks associated with the use of synthetic insecticides have led to the growth of an environmental Repellent: movement seeking sustainable alternatives in pest control. Evidence of this includes the growth a compound applied to of organic agriculture products that are now found in mainstream supermarkets and the banning skin, clothing, or other of ornamental use of synthetic pesticides in many local jurisdictions (22). Among the alternatives substrates that for pest control, biopesticides had a global market value of approximately US$1 billion in 2010. decreases normal contact time of This market is expected to grow to US$3.3 billion in 2014 (63). Biopesticides encompass a large arthropods with the number of technologies, from microbials to botanicals. Among the botanicals, essential oils (EOs) treated surface are a major category that began to develop with research in the 1980s (90). They are derived Steam distillation: from aromatic plants that, in the course of evolution, developed myriad constitutive and induced a type of distillation in chemical defenses against herbivorous insects (117). The EO market has had the strongest growth which water is added of all the botanical pesticide markets in recent years. Safety and regulatory issues have played a role to the distillation in this growth. Their widespread use as herbal medicines in Europe, Japan, and North America mixture, to allow volatile aromatic has increased confidence in their safety. However, EOs, like many natural products, are not always compounds to be subject to rigorous testing or formal registration (113). distilled with water EOs have many industrial applications: perfumery, cosmetics, detergents, pharmacology, fine vapor at temperatures chemistry, and food production products. As a result, overlapping markets sometimes add im- that avoid degradation portant scientific information but also complicate their interpretation for the biopesticide area. Although EOs have a promising future within the biopesticide market, progress on registration must be achieved before EOs occupy a significant market share of global pesticide markets. Among key reviews on EOs, some are general (26, 61), whereas others focus on microorgan- isms (17, 29, 52), cellular biological activities (7), or insects (5, 46, 48, 50, 51, 90, 92). We provide a critical treatment of EOs as insecticides. After defining them and discussing their main chem- ical components and properties, we focus on their bioactivities relevant to insect management in medical and agricultural contexts from a sustainable development perspective. Registration considerations in both North America and Europe, which enforce the largest and most rigorous legislation about plant protection products, are addressed because they are a key constraint on marketing EOs as insecticides or repellents. PHYTOCHEMISTRY OF ESSENTIAL OILS Plant EOs have been used since antiquity, but the first written description of distillation dates from the thirteenth century by Ibn al-Baitar in Andalusia, Spain (9), after which they were included in the pharmacopeias of European countries (17). EOs are defined as the products obtained from Annu. Rev. Entomol. 2012.57:405-424. Downloaded from www.annualreviews.org hydrodistillation, steam distillation, dry distillation, or mechanical cold pressing of plants (35). The classical preparation method is based on the Clevenger steam distillation apparatus devel- oped in 1928. Today this method has been adapted and scaled up for industrial production. Steam distillation requires large containers because of the low (generally <1%) yield from biomass and is costly because of high temperatures needed for distillation. Citrus peel is an exception because large quantities of oils can be obtained cheaply by cold pressing and conventional distillation. Modern methods of extraction include microwave-assisted process and supercritical fluid extrac- Access provided by Chinese Academy of Agricultural Sciences (Agricultural Information Institute) on 10/21/16. For personal use only. tion (18, 100), which may have great advantages such as lower oxidation of compounds, a feature especially useful for flower fragrances. However, these methods require some cleanup by fraction- ation because higher-molecular-weight lipids are also extracted. The advantage of the original steam distillation process is that it separates a relatively clean secondary metabolite fraction from plants, including mainly low-molecular-weight volatile phytochemicals, chiefly of terpene and phenolic origin, while excluding most primary metabolites and high-molecular-weight secondary 406 Regnault-Roger · Vincent · Arnason EN57CH20-Vincent ARI 31 October 2011 9:14 compounds, which have highly variable structures and modes of action. Chiasson et al. (18) com- pared three EO extraction methods, microwave-assisted process, supercritical fluid extraction, and steam distillation, on two aromatic plants and found that the three methods did not produce the same products. EOs are produced in 17,500 aromatic species of higher plants belonging mostly to a few families, including the Myrtaceae, Lauraceae, Lamiaceae, and Asteraceae. The synthesis and accumulation of EOs are associated with the presence of complex secretory structures such as glandular trichomes (Lamiaceae), secretory cavities (Myrtaceae, Rutaceae), and resin ducts (Asteraceae, Apiaceae) (101). Depending on the species considered, EOs are stored in various plant organs, e.g., flowers (bergamot orange, Citrus bergamia), leaves (lemon grass, Citronella spp.; eucalyptus, Eucalyptus spp.), wood (sandalwood, Santalum spp.), roots (vetiver grass, Chrysopogon zizanioides), rhizomes (ginger, Zingiber officinale;turmeric,Curcuma longa), fruits (anise, Pimpinella anisum), and seeds (nutmeg, Myristica fragrans). EO constituents belong mainly to two phytochemical groups: terpenoids (monoterpenes and sesquiterpenes of low molecular weight) and, to a lesser extent, phenylpropanoids. Terpenoids are major constituents of EOs. Monoterpenes are biosynthesized via the methyl erythritol phos- phate pathway in plastids, which yields the 5-carbon precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate, which condense via geranyl pyrophosphate synthase to give the monoterpenes (10-carbon) (13). Although isopentenyl pyrophosphate can transfer between com- partments, the monoterpenes and diterpenes tend to be formed in the plastid, where unique cyclases yield the fenchane, bornane, camphane, thujone, and pinane ring structures (13). The sesquiterpenes (15-carbon) are formed via the mevalonate pathway in the cytosol. Monoterpenes present in EOs may contain terpenes that are hydrocarbons (α-pinene), alcohols (menthol, geran- iol, linalool, terpinen-4-ol, p-menthane-3,8-diol), aldehydes (cinnamaldehyde, cuminaldehyde), ketones (thujone), ethers [1,8-cineole (= eucalyptol)], and lactones (nepetalactone) (Figure 1). Sesquiterpenes have a wide variety of structures, more than 100 skeletons, as the elongation of the chain to 15 carbons increases the
Recommended publications
  • Natural Enemies of Banana Lacewing Bug, Stephanitis Typica (Distant) in India, Including First Report of Anagrus Sp
    _____________Mun. Ent. Zool. Vol. 14, No. 1, January 2019__________ 83 NATURAL ENEMIES OF BANANA LACEWING BUG, STEPHANITIS TYPICA (DISTANT) IN INDIA, INCLUDING FIRST REPORT OF ANAGRUS SP. (HYMENOPTERA: MYMARIDAE) AS ITS EGG PARASITOID J. Poorani*, B. Padmanaban* and R. Thanigairaj* * ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Trichy 620102, Tamil Nadu, INDIA. E-mail: [email protected] [Poorani, J., Padmanaban, B. & Thanigairaj, R. 2019. Natural enemies of banana lacewing bug, Stephanitis typica (Distant) in India, including first report of Anagrus sp. (Hymenoptera: Mymaridae) as its egg parasitoid. Munis Entomology & Zoology, 14 (1): 83- 87] ABSTRACT: Natural enemies of the banana lacewing bug, Stephanitis typica (Distant) (Hemiptera: Tingidae) in India are documented. Diagnostic notes on Stethoconus praefectus (Distant), an obligate predator of S. typica with details of its other tingid hosts and host plants are provided. Two egg parasitoids, Erythmelus panis Enock and Anagrus sp. (Hymenoptera: Mymaridae) are reported as egg parasitoids of S. typica from Tamil Nadu and Manipur, respectively, the latter being the first record of this host association in the world. KEY WORDS: Banana tingid, natural enemies, biological control Stephanitis typica (Distant) (Hemiptera: Tingidae), commonly known as banana lacewing bug and coconut lacewing bug, is distributed in India, Sri Lanka, much of South-East Asia and the tropical west Pacific (CABI, 2017). Though it was originally recorded from banana (Distant, 1903), it is a major pest of coconut (Mathen et al., 1983) and also infests other host plants like turmeric, ginger, cardamom, etc. It is considered as only a minor, but common pest of bananas and plantains throughout India.
    [Show full text]
  • Biology of the Bruchidae +6178
    Ann. Rev. Entomol 1979. 24:449-73 Copyright @ 1979 by Annual Reviews Inc. All rights reserved BIOLOGY OF THE BRUCHIDAE +6178 B. J. Southgate Biology Department, Pest Infestation Control Laboratory, Ministry of Agriculture, Fisheries, and Food, Slough SL3 7HJ, Berks, England INTRODUCTION Species of Bruchidae breed in every continent except Antarctica. The larg­ est number of species live in the tropical regions of Asia, Africa, and Central and South America. Many species have obvious economic importance because they breed on grain legumes and consume valuable proteins that would otherwise be eaten by man. Other species, however, destroy seeds of an immense number of leguminous trees and shrubs, which, though they have no obvious economic value, stem the advance of the deserts into the marginal cultivated areas of the world. When this ecosystem is mismanaged by practices such as over­ grazing, then any organism that restricts the normal regeneration of seed­ lings will, in the long run, affect agriculture adversely. This has been demonstrated recently in some African and Middle Eastern semiarid zones (65). The present interest in the management of arid areas and in the introduc­ Annu. Rev. Entomol. 1979.24:449-473. Downloaded from www.annualreviews.org Access provided by Copyright Clearance Center on 11/01/20. For personal use only. tion of alternative tree species to provide timber, fodder, or shade has stimulated a detailed study of the ecology of some leguminous trees and shrubs that has revealed some deleterious effects of bruchid beetles on the seeds of these plants (42, 43, 59). It has also emphasized the inadequacy of our knowledge of the taxonomy and biology of these beetles.
    [Show full text]
  • Biological Control Genetically Engineered Crops Help Support
    Biological Control 130 (2019) 136–154 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Genetically engineered crops help support conservation biological control T ⁎ Jörg Romeisa, , Steven E. Naranjob, Michael Meisslea, Anthony M. Sheltonc a Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland b USDA-ARS, Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85138, USA c Department of Entomology, Cornell University, 630 W. North St., New York State Agricultural Experiment Station, Geneva, NY 14456, USA ARTICLE INFO ABSTRACT Keywords: Genetically engineered (GE) crops producing insecticidal proteins from Bacillus thuringiensis (Bt) (mainly Cry Bt crops proteins) have become a major control tactic for a number of key lepidopteran and coleopteran pests, mainly in Exposure maize, cotton, and soybean. As with any management tactic, there is concern that using GE crops might cause Integrated pest management adverse effects on valued non-target species, including arthropod predators and parasitoids that contribute to Meta-analyses biological control. Such potential risks are addressed prior to the commercial release of any new GE plant. Over Non-target effects the past 20+ years, extensive experience and insight have been gained through laboratory and field-based Natural enemies studies of the non-target effects of crops producing Cry proteins. Overall, the vast majority of studies demon- strates that the insecticidal proteins deployed today cause no unintended adverse effects to natural enemies. Furthermore, when Bt crops replace synthetic chemical insecticides for target pest control, this creates an en- vironment supportive of the conservation of natural enemies. As part of an overall integrated pest management (IPM) strategy, Bt crops can contribute to more effective biological control of both target and non-target pests.
    [Show full text]
  • Towards Classical Biological Control of Leek Moth
    ____________________________________________________________________________ Ateyyat This project seeks to provide greater coherence for the biocontrol knowledge system for regulators and researchers; create an open access information source for biocontrol re- search of agricultural pests in California, which will stimulate greater international knowl- edge sharing about agricultural pests in Mediterranean climates; and facilitate the exchange of information through a cyberinfrastructure among government regulators, and biocontrol entomologists and practitioners. It seeks broader impacts through: the uploading of previ- ously unavailable data being made openly accessible; the stimulation of greater interaction between the biological control regulation, research, and practitioner community in selected Mediterranean regions; the provision of more coherent and useful information to enhance regulatory decisions by public agency scientists; a partnership with the IOBC to facilitate international data sharing; and progress toward the ultimate goal of increasing the viability of biocontrol as a reduced risk pest control strategy. No Designated Session Theme BIOLOGY OF CIRROSPILUS INGENUUS GAHAN (HYMENOPTERA: EULOPHIDAE), AN ECTOPARASITOID OF THE CITRUS LEAFMINER, PHYLLOCNISTIS CITRELLA STAINTON (LEPIDOPTERA: GRACILLARIIDAE) ON LEMON 99 Mazen A. ATEYYAT Al-Shoubak University College, Al-Balqa’ Applied University, P.O. Box (5), Postal code 71911, Al-Shawbak, Jordan [email protected] The citrus leafminer (CLM), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in- vaded the Jordan Valley in 1994 and was able to spread throughout Jordan within a few months of its arrival. It was the most common parasitoid from 1997 to 1999 in the Jordan Valley. An increase in the activity of C. ingenuus was observed in autumn and the highest number of emerged C. ingenuus adults was in November 1999.
    [Show full text]
  • Urban Biodiversity: Patterns and Mechanisms
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Ecology and Conservation Biology Urban biodiversity: patterns and mechanisms Stanley H. Faeth,1 Christofer Bang,2 and Susanna Saari1 1Department of Biology, University of North Carolina Greensboro, Greensboro, North Carolina. 2School of Life Sciences, Arizona State University, Tempe, Arizona Address for correspondence: Stanley H. Faeth, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402-6170. [email protected] The patterns of biodiversity changes in cities are now fairly well established, although diversity changes in temperate cities are much better studied than cities in other climate zones. Generally, plant species richness often increases in cities due to importation of exotic species, whereas animal species richness declines. Abundances of some groups, especially birds and arthropods, often increase in urban areas despite declines in species richness. Although several models have been proposed for biodiversity change, the processes underlying the patterns of biodiversity in cities are poorly understood. We argue that humans directly control plants but relatively few animals and microbes— the remaining biological community is determined by this plant “template” upon which natural ecological and evolutionary processes act. As a result, conserving or reconstructing natural habitats defined by vegetation within urban areas is no guarantee that other components of the biological community will follow suit. Understanding the human-controlled and natural processes that alter biodiversity is essential for conserving urban biodiversity. This urban biodiversity will comprise a growing fraction of the world’s repository of biodiversity in the future. Keywords: urbanization; biodiversity; species interactions Introduction of cities and associated human activities4)effectson abundance, diversity, and species richness of terres- As the world’s population increasingly inhabits trial animals.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • The Role of Mating Systems in Sexual Selection in Parasitoid Wasps
    Biol. Rev. (2014), pp. 000–000. 1 doi: 10.1111/brv.12126 Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps Rebecca A. Boulton∗, Laura A. Collins and David M. Shuker Centre for Biological Diversity, School of Biology, University of St Andrews, Dyers Brae, Greenside place, Fife KY16 9TH, U.K. ABSTRACT Despite the diverse array of mating systems and life histories which characterise the parasitic Hymenoptera, sexual selection and sexual conflict in this taxon have been somewhat overlooked. For instance, parasitoid mating systems have typically been studied in terms of how mating structure affects sex allocation. In the past decade, however, some studies have sought to address sexual selection in the parasitoid wasps more explicitly and found that, despite the lack of obvious secondary sexual traits, sexual selection has the potential to shape a range of aspects of parasitoid reproductive behaviour and ecology. Moreover, various characteristics fundamental to the parasitoid way of life may provide innovative new ways to investigate different processes of sexual selection. The overall aim of this review therefore is to re-examine parasitoid biology with sexual selection in mind, for both parasitoid biologists and also researchers interested in sexual selection and the evolution of mating systems more generally. We will consider aspects of particular relevance that have already been well studied including local mating structure, sex allocation and sperm depletion. We go on to review what we already know about sexual selection in the parasitoid wasps and highlight areas which may prove fruitful for further investigation. In particular, sperm depletion and the costs of inbreeding under chromosomal sex determination provide novel opportunities for testing the role of direct and indirect benefits for the evolution of mate choice.
    [Show full text]
  • Dinarmus Basalis[/I]: Does Upbringing Influence Choices Later in Life? F
    Influence of host origin on host choice of the parasitoid [i]Dinarmus basalis[/i]: Does upbringing influence choices later in life? F. Sankara, L. C. B. Dabire, Z. Ilboudo, Sébastien Dugravot, Anne-Marie Cortesero, A. Sanon To cite this version: F. Sankara, L. C. B. Dabire, Z. Ilboudo, Sébastien Dugravot, Anne-Marie Cortesero, et al.. Influ- ence of host origin on host choice of the parasitoid [i]Dinarmus basalis[/i]: Does upbringing influ- ence choices later in life?. Journal of Insect Science, Oxford University Press, 2014, 14, pp.1-11. 10.1673/031.014.26. hal-01228839 HAL Id: hal-01228839 https://hal.archives-ouvertes.fr/hal-01228839 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Influence of Host Origin on Host Choice of the Parasitoid Dinarmus basalis: Does Upbringing Influence Choices Later in Life? Author(s): F. Sankara, L. C. B. Dabiré, Z. Ilboudo, S. Dugravot, A. M. Cortesero and A. Sanon Source: Journal of Insect Science, 14(26):1-11. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1673/031.014.26 URL: http://www.bioone.org/doi/full/10.1673/031.014.26 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences.
    [Show full text]
  • Stephanitis Takeyai Drake & Maa, 1955 (Hemiptera: Tingidae), New Species for Portugal
    ISSN: 1989-6581 Grosso-Silva et al. (2020) www.aegaweb.com/arquivos_entomoloxicos ARQUIVOS ENTOMOLÓXICOS, 22: 371-372 NOTA / NOTE Stephanitis takeyai Drake & Maa, 1955 (Hemiptera: Tingidae), new species for Portugal. 1 1 2 José Manuel Grosso-Silva , Iúri Frias & Torsten van der Heyden 1 Museu de História Natural e da Ciência da Universidade do Porto (MHNC-UP) / PRISC, Praça Gomes Teixeira. 4099-002 Porto, Portugal. e-mails: [email protected]; [email protected] 2 Immenweide 83. D-22523 Hamburg, Germany. e-mail: [email protected] Abstract: The first records of Stephanitis takeyai Drake & Maa, 1955 (Hemiptera: Tingidae) from Portugal are reported. The European distribution of the species is summarized. Key words: Hemiptera, Tingidae, Stephanitis takeyai, Portugal, Europe, distribution, first records. Resumen: Stephanitis takeyai Drake & Maa, 1955 (Hemiptera: Tingidae), nueva especie para Portugal. Se presentan las primeras citas de Stephanitis takeyai Drake & Maa, 1955 (Hemiptera: Tingidae) de Portugal. Se resume la distribución europea de la especie. Palabras clave: Hemiptera, Tingidae, Stephanitis takeyai, Portugal, Europa, distribución, primeras citas. Recibido: 13 de octubre de 2020 Publicado on-line: 20 de octubre de 2020 Aceptado: 18 de octubre de 2020 The andromeda lacebug, Stephanitis takeyai Drake & Maa, 1955 (Hemiptera: Tingidae), is an Asian species described from Japan that has been introduced into several areas around the globe, namely Europe, India, and the United States of America (DRAKE & RUHOFF, 1965; PÉRICART & GOLUB, 1996; RABITSCH, 2008, 2010). The species lives on ornamental plants of the family Ericaceae (Pieris, Rhododendron, Lyonia), showing a preference for Pieris japonica (Thunb.) D. Don ex G. Don (RABITSCH, 2008).
    [Show full text]
  • Taxonomic Studies on a Collection of Pteromalidae (Hymenoptera: Chalcidoidea) from Patnaand Nearby Districts of Bihar with the Description of Two New Species
    Rec. zool. Surv. India: llO(Part-4) : 51-66, 2011 TAXONOMIC STUDIES ON A COLLECTION OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) FROM PATNAAND NEARBY DISTRICTS OF BIHAR WITH THE DESCRIPTION OF TWO NEW SPECIES P.M. SURESHAN Zoological Survey of India, Western Ghats Regional Centre Kozhikode-673006, Kerala Email: [email protected] INTRODUCTION Pteromalidae belonging to 10 genera and 5 subfamilies Pteromalidae is one of the largest and taxonomically are reported from the state of Bihar (including the difficult families of Chalcidoidea (Hymenoptera present state of lharkhand). Parasitica) members of which are distributed in all The present paper is based on the study of biogeographical regions of the world. Majority of collection of Pteromalidae made from some southern Pteromalidae are primary or secondary parasitoids districts of Bihar near to Patna viz. Vaishali, Patna, attacking a large range of insect orders in their various Muzaffarpur, Gaya, Nalanda, Samasthipur, Chapra, stages of development, thereby playing a vital role in Saran, Bhojpur and lahanabad. Collections were made the control of insect pests in nature. Many species of from the field employing an insect net specially made Pteromalidae were employed successfully in biological for the purpose and an aspirator. Specimens were also control programmes all over the world hence they also collected by rearing the suspected hosts (immature form a rewarding group of insects for various aspects stages such as pupae, larvae, egg, etc.) in the of scientific studies like systematics, Biology, Ethology, laboratory. The specimens were properly preserved ecology etc. following standard procedures. The preserved The family Pteromalidae contains over 3500 specimens were identified following recent literature on described species under 588 genera world wide (Noyes, Pteromalidae (Boucek, 1988, Boucek & Rasplus, 1991, 2003).
    [Show full text]
  • Handbook of the Bruchidae of the United States and Canada Introduction to the Acrobat Pdf Edition
    Handbook of the Bruchidae of the United States and Canada Introduction to the Acrobat pdf edition The Acrobat pdf version of this publication, though identical in content to the print version, differs slightly in format from the print version. Also, in volume 2 the items on the errata list for the print version have been corrected. [THIS PAGE INTENTIONALLY BLANK] United States Department of Agriculture Handbook of the Agricultural Research Bruchidae of the United Service Technical States and Canada Bulletin Number 1912 November 2004 (Insecta, Coleoptera) Volume I I II United States Department of Agriculture Handbook of the Agricultural Research Bruchidae of the United Service Technical States and Canada Bulletin Number 1912 November 2004 (Insecta, Coleoptera) John M. Kingsolver Volume I Kingsolver was research entomologist, Systematic Entomology Laboratory, PSI, Agricultural Research Service, U.S. Department of Agriculture. He is presently research associate with the Florida State Collection of Arthropods. III Abstract Hemisphere. It provides the means to identify these insects for taxonomists, students, museum curators, biodiver- Kingsolver, John M. 2004. Handbook of sity workers, port identifiers, and ecolo- the Bruchidae of the United States and gists conducting studies in rangeland, Canada (Insecta, Coleoptera). U.S. Depart- pasture, and forest management in the ment of Agriculture, Technical Bulletin United States and Canada. 1912, 2 vol., 636 pp. Mention of commercial products in this Distinguishing characteristics and diag- publication is solely for the purpose of nostic keys are given for the 5 subfami- providing specific information and does lies, 24 genera, and 156 species of the not imply recommendation or endorse- seed beetle family Bruchidae of the Unit- ment by the U.S.
    [Show full text]
  • Sex Determination in the Hymenoptera: a Review of Models and Evidence
    Heredity 71 (1993) 421—435 Received 10 March 1993 Genetical Society of Great Britain Sex determination in the Hymenoptera: a review of models and evidence JAMES M. COOK Department of Genetics & Human Variation, La Trobe University, Bun doora 3083, Victoria, Australia Thehaploid males and diploid females of Hymenoptera have all chromosomes in the same proportions. This rules out most familiar sex-determining mechanisms, which rely on dosage differences at sex determination loci. Two types of model —genicbalance and complementary sex determination (CSD) —havebeen invoked for Hymenoptera. Experimental studies provide no good evidence for genic balance models, which are contradicted by the detection of diploid males in 33 disparate species. Furthermore, recent advances have shown that sex determination in the best- studied diploid animals does not depend on genic balance, removing the original justification for hymenopteran genic balance models. Instead, several Hymenoptera have single-locus CSD. In this system, sex locus heterozyotes are female while homozygotes and hemizygotes are male. Single- locus CSD does not apply to several inbreeding species and this probably reflects selection against the regular production of diploid males, which are sterile. A multilocus CSD model, in which heterozygosity at any one of several sex loci leads to female development has also been proposed. To date, multilocus CSD has not been demonstrated but several biases against its detection must be considered. CSD can apply to thelytokous races as long as the cytogenetic mechanism permits retention of sex locus heterozygosity. However, some thelytokous races clearly do not have CSD. The distribution of species with and without CSD suggests that this form of sex determination may be ancestral in the Hymenoptera.
    [Show full text]