Linear Algebra 1 Quiz 7 Solutions 7/3/3

Total Page:16

File Type:pdf, Size:1020Kb

Linear Algebra 1 Quiz 7 Solutions 7/3/3 Linear Algebra 1 Quiz 7 Solutions 7/3/3 Question 1 Explain why each of the following sets is or is not a vector space, with the given operations of ”addition” and ”scalar multiplication”: • The set X of all non-negative real numbers under ordinary addition, with ”scalar multiplication” by the absolute value of the scalar: a +X b = a + b, sXa = |s|a. If this is a vector space then 0 is the zero vector, since a+X 0 = 0+X a = a, for any a in X. In a vector space if v is a vector, then there is a unique vector w, called the additive inverse of v, such that v + w = 0. Here 1 is a positive real number, so it is in the space X. But if w is any element of X, then 1 +X w = 1 + w is strictly positive and is never zero. So the additive inverse of 1 does not exist. So X is not a vector space with the given operations. • The set Y of all two by two matrices with ”addition” being ordinary matrix multiplication and with scalar multiplication the standard mul- tiplication of a matrix by a scalar: A +Y B = AB, sYA = sA. In a vector space the addition of vectors is commutative. But multiplication of two by two matrices is not commutative, so the operation of multiplication will not do as an operation of vector addi- tion for the set Y. Specifically we may multiply the following matrices: 0 1 0 0 A = B = 0 0 1 0 1 0 0 0 AB = BA = 0 0 0 1 Since AB 6= BA, we have A +Y B 6= B +Y A, so the set Y is not a vector space with the given operations. • The set Z of all points [x, y, z] on the line x = 3t, y = 7t, z = −2t, as t ∈ R varies, under ordinary vector addition and scalar multiplication. This is a vector space. To show this, by the subspace theorem, we just have to show that the operations are well-defined on Z and then Z is automatically a subspace of R3. Let A and B be two points of Z. Then A = [3s, 7s, −2s] and B = [3t, 7t, −2t], for some real s and t. Then we have: A + B = [3s + 3t, 7s + 7t, −2s − 2t] = [3(s + t), 7(s + t), −2(s + t)] = [3u, 7u, −2u]. Here u = s + t. So A + B lies in Z. Next for any real r, we have: rA = r[3s, 7s, −2s] = [3rs, 7rs, −2rs] = [3w, 7w, −2w]. Here w = rs. So rA lies in Z. So the vector space operations of R3 are well-defined on Z. So Z is a subspace of R3 and, in particular, Z is a vector space. • The collection U of all polynomials in the variable x, of degree in x no more than four, which have the same value at x = −1 and x = 1, with the usual rules for addition and scalar multiplication of polynomials. We see that U is a vector space. We know that the space of all real polynomials of degree not more than four forms a vector space, P4. So, by the subspace theorem, we just have to show that U is closed under the operations of P4. If f(x) and g(x) are in U, so f(1) = f(−1) and g(1) = g(−1), put h(x) = (f + g)(x) = f(x) + g(x) ∈ P4. Then we have: h(1) = f(1) + g(1) = f(−1) + g(−1) = h(−1). So h ∈ U. If s ∈ R, put k(x) = (sf)(x) = sf(x). Then we have: k(1) = sf(1) = sf(−1) = k(−1). So k ∈ U. So U is closed under addition and scalar multiplication in P4, so U is a subspace of P4 and is vector space, as required. Question 2 Let A be the set of all (x, y, z) ∈ R3 such that x − y + 3z = 0. • Show that A is a vector space, with the usual rules for vector addition and scalar multiplication. The set A is given as the solution space of a homogeneous linear sys- tem, so forms a vector space: If we write any such system as Mv = 0, with v ∈ Rn and M a fixed ma- trix, then if Ma = 0 and Mb = 0, then M(a+b) = Ma+Mb = 0+0 = 0, so the solution space is closed under addition. Also, if Ma = 0 and s is a real number, then M(sa) = s(Ma) = s(0) = 0, so the solution space is closed under scalar multiplication. So the solution space has well-defined operations of addition and scalar multiplication and then by the subspace theorem, the other axioms of a vector space follow from those of Rn. • Find the general solution of the homogeneous system x − y + 3z = 0 and show that every element of the vector space A can be written as some linear combination of two fixed vectors in the space A. The linear system has the reduced echelon form: 1 −1 3 0 There is one pivot, corresponding to the variable x and two free vari- ables, the variables y and z. So we solve by putting y = s and z = t. Then x = y − 3z = s − 3t, so we get: (x, y, z) = (s − 3t, s, t) = s(1, 1, 0) + t(−3, 0, 1), where s and t are arbitrary real numbers. This shows that the general solution is a linear combination of the two vectors B = (1, 1, 0) and C = (−3, 0, 1). But each of these vectors solve the given linear system, as is easily checked. So the general solution is a linear combination of two vectors of A, namely B and C, as required..
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
    Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi.
    [Show full text]
  • Algebra of Linear Transformations and Matrices Math 130 Linear Algebra
    Then the two compositions are 0 −1 1 0 0 1 BA = = 1 0 0 −1 1 0 Algebra of linear transformations and 1 0 0 −1 0 −1 AB = = matrices 0 −1 1 0 −1 0 Math 130 Linear Algebra D Joyce, Fall 2013 The products aren't the same. You can perform these on physical objects. Take We've looked at the operations of addition and a book. First rotate it 90◦ then flip it over. Start scalar multiplication on linear transformations and again but flip first then rotate 90◦. The book ends used them to define addition and scalar multipli- up in different orientations. cation on matrices. For a given basis β on V and another basis γ on W , we have an isomorphism Matrix multiplication is associative. Al- γ ' φβ : Hom(V; W ) ! Mm×n of vector spaces which though it's not commutative, it is associative. assigns to a linear transformation T : V ! W its That's because it corresponds to composition of γ standard matrix [T ]β. functions, and that's associative. Given any three We also have matrix multiplication which corre- functions f, g, and h, we'll show (f ◦ g) ◦ h = sponds to composition of linear transformations. If f ◦ (g ◦ h) by showing the two sides have the same A is the standard matrix for a transformation S, values for all x. and B is the standard matrix for a transformation T , then we defined multiplication of matrices so ((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x))) that the product AB is be the standard matrix for S ◦ T .
    [Show full text]
  • Introduction Into Quaternions for Spacecraft Attitude Representation
    Introduction into quaternions for spacecraft attitude representation Dipl. -Ing. Karsten Groÿekatthöfer, Dr. -Ing. Zizung Yoon Technical University of Berlin Department of Astronautics and Aeronautics Berlin, Germany May 31, 2012 Abstract The purpose of this paper is to provide a straight-forward and practical introduction to quaternion operation and calculation for rigid-body attitude representation. Therefore the basic quaternion denition as well as transformation rules and conversion rules to or from other attitude representation parameters are summarized. The quaternion computation rules are supported by practical examples to make each step comprehensible. 1 Introduction Quaternions are widely used as attitude represenation parameter of rigid bodies such as space- crafts. This is due to the fact that quaternion inherently come along with some advantages such as no singularity and computationally less intense compared to other attitude parameters such as Euler angles or a direction cosine matrix. Mainly, quaternions are used to • Parameterize a spacecraft's attitude with respect to reference coordinate system, • Propagate the attitude from one moment to the next by integrating the spacecraft equa- tions of motion, • Perform a coordinate transformation: e.g. calculate a vector in body xed frame from a (by measurement) known vector in inertial frame. However, dierent references use several notations and rules to represent and handle attitude in terms of quaternions, which might be confusing for newcomers [5], [4]. Therefore this article gives a straight-forward and clearly notated introduction into the subject of quaternions for attitude representation. The attitude of a spacecraft is its rotational orientation in space relative to a dened reference coordinate system.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • How to Enter Answers in Webwork
    Introduction to WeBWorK 1 How to Enter Answers in WeBWorK Addition + a+b gives ab Subtraction - a-b gives ab Multiplication * a*b gives ab Multiplication may also be indicated by a space or juxtaposition, such as 2x, 2 x, 2*x, or 2(x+y). Division / a a/b gives b Exponents ^ or ** a^b gives ab as does a**b Parentheses, brackets, etc (...), [...], {...} Syntax for entering expressions Be careful entering expressions just as you would be careful entering expressions in a calculator. Sometimes using the * symbol to indicate multiplication makes things easier to read. For example (1+2)*(3+4) and (1+2)(3+4) are both valid. So are 3*4 and 3 4 (3 space 4, not 34) but using an explicit multiplication symbol makes things clearer. Use parentheses (), brackets [], and curly braces {} to make your meaning clear. Do not enter 2/4+5 (which is 5 ½ ) when you really want 2/(4+5) (which is 2/9). Do not enter 2/3*4 (which is 8/3) when you really want 2/(3*4) (which is 2/12). Entering big quotients with square brackets, e.g. [1+2+3+4]/[5+6+7+8], is a good practice. Be careful when entering functions. It is always good practice to use parentheses when entering functions. Write sin(t) instead of sint or sin t. WeBWorK has been programmed to accept sin t or even sint to mean sin(t). But sin 2t is really sin(2)t, i.e. (sin(2))*t. Be careful. Be careful entering powers of trigonometric, and other, functions.
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]
  • Supplement 1: Toolkit Functions
    Supplement 1: Toolkit Functions What is a Function? The natural world is full of relationships between quantities that change. When we see these relationships, it is natural for us to ask “If I know one quantity, can I then determine the other?” This establishes the idea of an input quantity, or independent variable, and a corresponding output quantity, or dependent variable. From this we get the notion of a functional relationship in which the output can be determined from the input. For some quantities, like height and age, there are certainly relationships between these quantities. Given a specific person and any age, it is easy enough to determine their height, but if we tried to reverse that relationship and determine age from a given height, that would be problematic, since most people maintain the same height for many years. Function Function: A rule for a relationship between an input, or independent, quantity and an output, or dependent, quantity in which each input value uniquely determines one output value. We say “the output is a function of the input.” Function Notation The notation output = f(input) defines a function named f. This would be read “output is f of input” Graphs as Functions Oftentimes a graph of a relationship can be used to define a function. By convention, graphs are typically created with the input quantity along the horizontal axis and the output quantity along the vertical. The most common graph has y on the vertical axis and x on the horizontal axis, and we say y is a function of x, or y = f(x) when the function is named f.
    [Show full text]
  • Section 1.4 Absolute Value
    Section 1.4 Absolute Value Geometric Definition of Absolute Value As we study the number line, we observe a very useful property called symmetry. The numbers are symmetrical with respect to the origin. That is, if we go four units to the right of 0, we come to the number 4. If we go four units to the lest of 0 we come to the opposite of 4 which is −4 The absolute value of a number a, denoted |a|, is the distance from a to 0 on the number line. Absolute value speaks to the question of "how far," and not "which way." The phrase how far implies length, and length is always a nonnegative (zero or positive) quantity. Thus, the absolute value of a number is a nonnegative number. This is shown in the following examples: Example 1 1 Algebraic Definition of Absolute Value The absolute value of a number a is aaif 0 | a | aaif 0 The algebraic definition takes into account the fact that the number a could be either positive or zero (≥0) or negative (<0) 1) If the number a is positive or zero (≥ 0), the first part of the definition applies. The first part of the definition tells us that if the number enclosed in the absolute bars is a nonnegative number, the absolute value of the number is the number itself. 2) If the number a is negative (< 0), the second part of the definition applies. The second part of the definition tells us that if the number enclosed within the absolute value bars is a negative number, the absolute value of the number is the opposite of the number.
    [Show full text]
  • A Tutorial on Euler Angles and Quaternions
    A Tutorial on Euler Angles and Quaternions Moti Ben-Ari Department of Science Teaching Weizmann Institute of Science http://www.weizmann.ac.il/sci-tea/benari/ Version 2.0.1 c 2014–17 by Moti Ben-Ari. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/ by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. Chapter 1 Introduction You sitting in an airplane at night, watching a movie displayed on the screen attached to the seat in front of you. The airplane gently banks to the left. You may feel the slight acceleration, but you won’t see any change in the position of the movie screen. Both you and the screen are in the same frame of reference, so unless you stand up or make another move, the position and orientation of the screen relative to your position and orientation won’t change. The same is not true with respect to your position and orientation relative to the frame of reference of the earth. The airplane is moving forward at a very high speed and the bank changes your orientation with respect to the earth. The transformation of coordinates (position and orientation) from one frame of reference is a fundamental operation in several areas: flight control of aircraft and rockets, move- ment of manipulators in robotics, and computer graphics. This tutorial introduces the mathematics of rotations using two formalisms: (1) Euler angles are the angles of rotation of a three-dimensional coordinate frame.
    [Show full text]
  • The Classical Matrix Groups 1 Groups
    The Classical Matrix Groups CDs 270, Spring 2010/2011 The notes provide a brief review of matrix groups. The primary goal is to motivate the lan- guage and symbols used to represent rotations (SO(2) and SO(3)) and spatial displacements (SE(2) and SE(3)). 1 Groups A group, G, is a mathematical structure with the following characteristics and properties: i. the group consists of a set of elements {gj} which can be indexed. The indices j may form a finite, countably infinite, or continous (uncountably infinite) set. ii. An associative binary group operation, denoted by 0 ∗0 , termed the group product. The product of two group elements is also a group element: ∀ gi, gj ∈ G gi ∗ gj = gk, where gk ∈ G. iii. A unique group identify element, e, with the property that: e ∗ gj = gj for all gj ∈ G. −1 iv. For every gj ∈ G, there must exist an inverse element, gj , such that −1 gj ∗ gj = e. Simple examples of groups include the integers, Z, with addition as the group operation, and the real numbers mod zero, R − {0}, with multiplication as the group operation. 1.1 The General Linear Group, GL(N) The set of all N × N invertible matrices with the group operation of matrix multiplication forms the General Linear Group of dimension N. This group is denoted by the symbol GL(N), or GL(N, K) where K is a field, such as R, C, etc. Generally, we will only consider the cases where K = R or K = C, which are respectively denoted by GL(N, R) and GL(N, C).
    [Show full text]