Rational2ams.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Rational2ams.Pdf SOME RATIONAL CUBIC FOURFOLDS BRENDAN HASSETT Introduction The purp ose of this pap er is to give new examples of rational cubic fourfolds Let C denote the mo duli space of cubic fourfolds a twentydimensional quasipro jective variety The cubic fourfolds containing a plane form a divisor C C We prove the following theorem Main Theorem Theorem There is a countably innite col lection of divisors in C which parametrize rational cubic fourfolds Each of these is a codimension two subvariety in the moduli space of cubic fourfolds C Exp erimental evidence strongly suggests that the general cubic fourfold containing a plane is not rational but no smo oth cubic fourfold has yet b een proven to b e irrational The key to our construction is the following observation a cubic fourfold contain ing a plane is birational to a smo oth quadric surface over k P Indeed pro jecting from the plane gives a rational map to P whose b ers are quadric surfaces The cubic fourfold is rational if the quadric surface over k P is rational Using Ho dge theory we prove that the rational quadric surfaces corresp ond to a countably in nite union of divisors in C This is quite natural from an arithmetic p oint of view Over Q the rational quadric surfaces form a countably innite union of divisors in the Hilb ert scheme of quadric surfaces in P We conclude this intro duction by listing the cubic fourfolds known to b e rational There is an irreducible divisor C C parametrizing rational cubic fourfolds This divisor has many geometric characterizations For example it is the closure of the cubic fourfolds containing rational normal scrolls of degree four Fa Tr Ha and of the lo cus of Pfaan cubic fourfolds BD All the examples of rational cubic fourfolds known to the author are contained in C or one of the subvarieties of C Furthermore the birational map from P involves blowing up a surface birational to a K surface see x for details We work over the complex numb ers C unless mentioned otherwise Here generic means in the complement of a Zariski closed prop er subset and general means in the complement of a countable union of Zariski closed prop er subsets A lattice is a nitely generated free Zmo dule equipp ed with a nondegenerate integral quadratic form Part of this work was done while the author was visiting the Institut MittagLeer This pap er was revised while the author was supp orted by a National Science Foundation Postdo ctoral Fellowship BRENDAN HASSETT C 14 C 8 C Figure Known Rational Cubic Fourfolds Geometry of quadric surface bundles For our purp oses a quadric surface bund le is a at pro jective morphism q Q B of regular connected schemes such that the generic b er is a smo oth quadric surface The relative Fano scheme F B of a quadric surface bundle parametrizes the lines contained in the b ers of q For a smo oth quadric surface over a eld this consists of two disjoint smo oth genus zero curves corresp onding to the rulings of the surface Prop osition Let q Q Sp eck b e a smo oth quadric surface over a eld k Then the following are equivalent Q is rational over k The Fano scheme F of Q has a divisor dened over k with degree one on each comp onent Q has a zerocycle of o dd degree dened over k Proof Let Z denote the universal line over F so that we have a corresp ondence p Z q Q F and an induced Ab elJacobi map q p Ch Q PicF where Ch Q denotes the Chow group of zerocycles on Q The quadric Q is rational if and only if it has a p oint over k This p oint is mapp ed by to a pair of p oints dened over k one on each comp onent of F Conversely given such a pair of p oints the intersection of the corresp onding lines gives a k p oint of Q This proves the equivalence of the rst two conditions Clearly either of the rst two conditions implies the third we prove the converse Let z b e a cycle of o dd degree n on Q and dened over k The cycle z has degree n on each comp onent of F The canonical class K is dened over k F and has degree on each comp onent of F Consequently nK z has degree F one on each comp onent of F Given a nonzero section s H F nK z the F lo cus s consists of a pair of p oints on F one on each comp onent The prop osition has the following consequence SOME RATIONAL CUBIC FOURFOLDS Corollary Let q Q B b e a quadric surface bundle and assume B is rational over the base eld Let Q denote the class of the generic b er of q and assume there is a cycle T Ch Q dened over the base eld such that hT Qi is o dd Then Q is rational over the base eld We apply the prop osition to k k B the function eld of B Note that h i denotes the intersection pro duct on Q In our analysis of cubic fourfolds we shall use a transcendental version of this result Prop osition Let q Q B b e a quadric surface bundle over a rational pro jective variety Assume there is a class T H Q Z H Q such that hT Qi is o dd Then X is rational over C Proof By the previous prop osition it suces to construct a divisor on the relative Fano scheme F B intersecting the comp onents of the generic b er in h Q T i p oints We may discard any comp onents of F that fail to dominate B Cho ose a resolution of singularities F F and set Z F Z We again obtain a F corresp ondence of smo oth varieties p Z q Q F and an induced map on cohomology q p H Q Z H Q H F Z H F By the Lefschetz Theorem on classes T is a divisor on F The image of this divisor in F has the desired prop erties Cubic fourfolds containing a plane First we x some notation The Hilb ert scheme of cubic hyp ersurfaces in P is a pro jective space P The smo oth hyp ersurfaces form an op en subset U P and are called cubic fourfolds Two cubic fourfolds are isomorphic if and only if they are equivalent under the action of SL Consequently the isomorphism classes of cubic fourfolds corresp ond to elements of the orbit space C U SL Applying Geometric Invariant Theory GIT x one may prove that C has the structure of a twentydimensional quasipro jective variety C is called the moduli space of cubic fourfolds Now consider a cubic fourfold X containing a plane P A dimension count shows the isomorphism classes of such cubic fourfolds form a divisor C C We shall restrict our attention to these sp ecial cubic fourfolds for more details see V Ha or Ha Let h denote the hyp erplane class of X and let Q denote the class of a quadric surface residual to P in a threedimensional linear space so that h P Q Let X denote the blowup of X along P Pro jecting from the plane P we obtain a morphism q X P The b ers of this morphism corresp ond to quadric surfaces in the class Q In particular a cubic fourfold containing a plane is birational to a quadric surface BRENDAN HASSETT bundle over P Applying the results of the previous section we obtain the following theorem Theorem Let X b e a cubic fourfold containing a plane P and let Q b e the class of a quadric surface residual to P Assume there is a class T H X Z H X such that hQ T i is o dd Then X is rational over C Analysis of the periods Our next goal is to determine when the hyp otheses of the theorem are satised We retain the terminology of the previous section The metho ds we use are ex plained in more detail in Ha x and Ha V also contains a detailed discussion of the p erio ds of cubic fourfolds containing a plane Let K H X Z denote the sublattice spanned by h and Q The intersection form on H X Z restricts to h Q h Q denote the orthogonal complement to K in H X Z Let K We now recall some results ab out the p erio ds of cubic fourfolds containing a plane More general statements are proved in Ha x and Ha Let L b e a lattice isomorphic to the middle cohomology of a cubic fourfold L has signature Fix distinguished elements h and P in L corresp onding to the hyp erplane class squared and a plane contained in some cubic fourfold Let X b e a cubic fourfold containing a plane P and let H X Z L b e a complete marking of its cohomology preserving the classes h and P This induces a map H X C L C Now the Ho dge structure on the middle cohomology of X is entirely determined C which is isotropic with by the onedimensional subspace H X K resp ect to the intersection form Consequently each completely marked cubic four fold containing a plane yields a p oint on the quadric hyp ersurface of PK C where the intersection form is zero The local period domain for cubic fourfolds containing a plane is a top ologically op en subset of this hyp ersurface consisting of one of the connected comp onents of the op en set where the Hermitian form hu vi is p ositive This manifold has the structure of a nineteendimensional b ounded symmetric domain of typ e IV Sa x of the app endix it is denoted D Let denote the automorphisms of L which preserve the intersection form act trivially on K and resp ect the orientation on the negative denite part of K The group acts from the left on D PK C The quotient nD is called the global period domain for cubic fourfolds containing a plane This is the quotient of a b ounded symmetric domain by an arithmetic group and so is a normal quasi mar pro jective varietyBB Let C b e the variety parametrizing the pairs X P where X is a cubic fourfold and P is plane contained in X The p erio d map mar nD C is an algebraic op en immersion of quasipro jective varieties This follows from the Torelli theorem for cubic fourfolds V and the Borel extension theorem Bo We now state our main
Recommended publications
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • Pencils of Quadrics
    Europ. J. Combinatorics (1988) 9, 255-270 Intersections in Projective Space II: Pencils of Quadrics A. A. BRUEN AND J. w. P. HIRSCHFELD A complete classification is given of pencils of quadrics in projective space of three dimensions over a finite field, where each pencil contains at least one non-singular quadric and where the base curve is not absolutely irreducible. This leads to interesting configurations in the space such as partitions by elliptic quadrics and by lines. 1. INTRODUCTION A pencil of quadrics in PG(3, q) is non-singular if it contains at least one non-singular quadric. The base of a pencil is a quartic curve and is reducible if over some extension of GF(q) it splits into more than one component: four lines, two lines and a conic, two conics, or a line and a twisted cubic. In order to contain no points or to contain some line over GF(q), the base is necessarily reducible. In the main part of this paper a classification is given of non-singular pencils ofquadrics in L = PG(3, q) with a reducible base. This leads to geometrically interesting configur­ ations obtained from elliptic and hyperbolic quadrics, such as spreads and partitions of L. The remaining part of the paper deals with the case when the base is not reducible and is therefore a rational or elliptic quartic. The number of points in the elliptic case is then governed by the Hasse formula. However, we are able to derive an interesting combi­ natorial relationship, valid also in higher dimensions, between the number of points in the base curve and the number in the base curve of a dual pencil.
    [Show full text]
  • Solving Cubic Polynomials
    Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Elements of Chapter 9: Nonlinear Systems Examples
    Elements of Chapter 9: Nonlinear Systems To solve x0 = Ax, we use the ansatz that x(t) = eλtv. We found that λ is an eigenvalue of A, and v an associated eigenvector. We can also summarize the geometric behavior of the solutions by looking at a plot- However, there is an easier way to classify the stability of the origin (as an equilibrium), To find the eigenvalues, we compute the characteristic equation: p Tr(A) ± ∆ λ2 − Tr(A)λ + det(A) = 0 λ = 2 which depends on the discriminant ∆: • ∆ > 0: Real λ1; λ2. • ∆ < 0: Complex λ = a + ib • ∆ = 0: One eigenvalue. The type of solution depends on ∆, and in particular, where ∆ = 0: ∆ = 0 ) 0 = (Tr(A))2 − 4det(A) This is a parabola in the (Tr(A); det(A)) coordinate system, inside the parabola is where ∆ < 0 (complex roots), and outside the parabola is where ∆ > 0. We can then locate the position of our particular trace and determinant using the Poincar´eDiagram and it will tell us what the stability will be. Examples Given the system where x0 = Ax for each matrix A below, classify the origin using the Poincar´eDiagram: 1 −4 1. 4 −7 SOLUTION: Compute the trace, determinant and discriminant: Tr(A) = −6 Det(A) = −7 + 16 = 9 ∆ = 36 − 4 · 9 = 0 Therefore, we have a \degenerate sink" at the origin. 1 2 2. −5 −1 SOLUTION: Compute the trace, determinant and discriminant: Tr(A) = 0 Det(A) = −1 + 10 = 9 ∆ = 02 − 4 · 9 = −36 The origin is a center. 1 3. Given the system x0 = Ax where the matrix A depends on α, describe how the equilibrium solution changes depending on α (use the Poincar´e Diagram): 2 −5 (a) α −2 SOLUTION: The trace is 0, so that puts us on the \det(A)" axis.
    [Show full text]
  • Quadric Surfaces
    Quadric Surfaces SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 11.7 of the rec- ommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes. EXPECTED SKILLS: • Be able to compute & traces of quadic surfaces; in particular, be able to recognize the resulting conic sections in the given plane. • Given an equation for a quadric surface, be able to recognize the type of surface (and, in particular, its graph). PRACTICE PROBLEMS: For problems 1-9, use traces to identify and sketch the given surface in 3-space. 1. 4x2 + y2 + z2 = 4 Ellipsoid 1 2. −x2 − y2 + z2 = 1 Hyperboloid of 2 Sheets 3. 4x2 + 9y2 − 36z2 = 36 Hyperboloid of 1 Sheet 4. z = 4x2 + y2 Elliptic Paraboloid 2 5. z2 = x2 + y2 Circular Double Cone 6. x2 + y2 − z2 = 1 Hyperboloid of 1 Sheet 7. z = 4 − x2 − y2 Circular Paraboloid 3 8. 3x2 + 4y2 + 6z2 = 12 Ellipsoid 9. −4x2 − 9y2 + 36z2 = 36 Hyperboloid of 2 Sheets 10. Identify each of the following surfaces. (a) 16x2 + 4y2 + 4z2 − 64x + 8y + 16z = 0 After completing the square, we can rewrite the equation as: 16(x − 2)2 + 4(y + 1)2 + 4(z + 2)2 = 84 This is an ellipsoid which has been shifted. Specifically, it is now centered at (2; −1; −2). (b) −4x2 + y2 + 16z2 − 8x + 10y + 32z = 0 4 After completing the square, we can rewrite the equation as: −4(x − 1)2 + (y + 5)2 + 16(z + 1)2 = 37 This is a hyperboloid of 1 sheet which has been shifted.
    [Show full text]
  • Polynomials and Quadratics
    Higher hsn .uk.net Mathematics UNIT 2 OUTCOME 1 Polynomials and Quadratics Contents Polynomials and Quadratics 64 1 Quadratics 64 2 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining the Equation of a Parabola 72 6 Solving Quadratic Inequalities 74 7 Intersections of Lines and Parabolas 76 8 Polynomials 77 9 Synthetic Division 78 10 Finding Unknown Coefficients 82 11 Finding Intersections of Curves 84 12 Determining the Equation of a Curve 86 13 Approximating Roots 88 HSN22100 This document was produced specially for the HSN.uk.net website, and we require that any copies or derivative works attribute the work to Higher Still Notes. For more details about the copyright on these notes, please see http://creativecommons.org/licenses/by-nc-sa/2.5/scotland/ Higher Mathematics Unit 2 – Polynomials and Quadratics OUTCOME 1 Polynomials and Quadratics 1 Quadratics A quadratic has the form ax2 + bx + c where a, b, and c are any real numbers, provided a ≠ 0 . You should already be familiar with the following. The graph of a quadratic is called a parabola . There are two possible shapes: concave up (if a > 0 ) concave down (if a < 0 ) This has a minimum This has a maximum turning point turning point To find the roots (i.e. solutions) of the quadratic equation ax2 + bx + c = 0, we can use: factorisation; completing the square (see Section 3); −b ± b2 − 4 ac the quadratic formula: x = (this is not given in the exam). 2a EXAMPLES 1. Find the roots of x2 −2 x − 3 = 0 .
    [Show full text]
  • Quadric Surfaces
    Quadric Surfaces Six basic types of quadric surfaces: • ellipsoid • cone • elliptic paraboloid • hyperboloid of one sheet • hyperboloid of two sheets • hyperbolic paraboloid (A) (B) (C) (D) (E) (F) 1. For each surface, describe the traces of the surface in x = k, y = k, and z = k. Then pick the term from the list above which seems to most accurately describe the surface (we haven't learned any of these terms yet, but you should be able to make a good educated guess), and pick the correct picture of the surface. x2 y2 (a) − = z. 9 16 1 • Traces in x = k: parabolas • Traces in y = k: parabolas • Traces in z = k: hyperbolas (possibly a pair of lines) y2 k2 Solution. The trace in x = k of the surface is z = − 16 + 9 , which is a downward-opening parabola. x2 k2 The trace in y = k of the surface is z = 9 − 16 , which is an upward-opening parabola. x2 y2 The trace in z = k of the surface is 9 − 16 = k, which is a hyperbola if k 6= 0 and a pair of lines (a degenerate hyperbola) if k = 0. This surface is called a hyperbolic paraboloid , and it looks like picture (E) . It is also sometimes called a saddle. x2 y2 z2 (b) + + = 1. 4 25 9 • Traces in x = k: ellipses (possibly a point) or nothing • Traces in y = k: ellipses (possibly a point) or nothing • Traces in z = k: ellipses (possibly a point) or nothing y2 z2 k2 k2 Solution. The trace in x = k of the surface is 25 + 9 = 1− 4 .
    [Show full text]
  • Quadratic Polynomials
    Quadratic Polynomials If a>0thenthegraphofax2 is obtained by starting with the graph of x2, and then stretching or shrinking vertically by a. If a<0thenthegraphofax2 is obtained by starting with the graph of x2, then flipping it over the x-axis, and then stretching or shrinking vertically by the positive number a. When a>0wesaythatthegraphof− ax2 “opens up”. When a<0wesay that the graph of ax2 “opens down”. I Cit i-a x-ax~S ~12 *************‘s-aXiS —10.? 148 2 If a, c, d and a = 0, then the graph of a(x + c) 2 + d is obtained by If a, c, d R and a = 0, then the graph of a(x + c)2 + d is obtained by 2 R 6 2 shiftingIf a, c, the d ⇥ graphR and ofaax=⇤ 2 0,horizontally then the graph by c, and of a vertically(x + c) + byd dis. obtained (Remember by shiftingshifting the the⇥ graph graph of of axax⇤ 2 horizontallyhorizontally by by cc,, and and vertically vertically by by dd.. (Remember (Remember thatthatd>d>0meansmovingup,0meansmovingup,d<d<0meansmovingdown,0meansmovingdown,c>c>0meansmoving0meansmoving thatleft,andd>c<0meansmovingup,0meansmovingd<right0meansmovingdown,.) c>0meansmoving leftleft,and,andc<c<0meansmoving0meansmovingrightright.).) 2 If a =0,thegraphofafunctionf(x)=a(x + c) 2+ d is called a parabola. If a =0,thegraphofafunctionf(x)=a(x + c)2 + d is called a parabola. 6 2 TheIf a point=0,thegraphofafunction⇤ ( c, d) 2 is called thefvertex(x)=aof(x the+ c parabola.) + d is called a parabola. The point⇤ ( c, d) R2 is called the vertex of the parabola.
    [Show full text]
  • Stable Rationality of Quadric and Cubic Surface Bundle Fourfolds
    STABLE RATIONALITY OF QUADRIC AND CUBIC SURFACE BUNDLE FOURFOLDS ASHER AUEL, CHRISTIAN BOHNING,¨ AND ALENA PIRUTKA Abstract. We study the stable rationality problem for quadric and cubic surface bundles over surfaces from the point of view of the degeneration method for the Chow group of 0-cycles. Our main result is that a very general hypersurface X of bidegree (2, 3) in P2 × P3 is not stably rational. Via projections onto the two factors, X → P2 is a cubic surface bundle and X → P3 is a conic bundle, and we analyze the stable rationality problem from both these points of view. Also, 2 we introduce, for any n ≥ 4, new quadric surface bundle fourfolds Xn → P with 2 discriminant curve Dn ⊂ P of degree 2n, such that Xn has nontrivial unramified Brauer group and admits a universally CH0-trivial resolution. 1. Introduction An integral variety X over a field k is stably rational if X Pm is rational, for some m. In recent years, failure of stable rationality has been× established for many classes of smooth rationally connected projective complex varieties, see, for instance [1, 3, 4, 7, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 36, 37]. These results were obtained by the specialization method, introduced by C. Voisin [37] and developed in [16]. In many applications, one uses this method in the following form. For simplicity, assume that k is an uncountable algebraically closed field and consider a quasi-projective integral scheme B over k and a generically smooth projective morphism B with positive dimensional fibers.
    [Show full text]
  • The Determinant and the Discriminant
    CHAPTER 2 The determinant and the discriminant In this chapter we discuss two indefinite quadratic forms: the determi- nant quadratic form det(a, b, c, d)=ad bc, − and the discriminant disc(a, b, c)=b2 4ac. − We will be interested in the integral representations of a given integer n by either of these, that is the set of solutions of the equations 4 ad bc = n, (a, b, c, d) Z − 2 and 2 3 b ac = n, (a, b, c) Z . − 2 For q either of these forms, we denote by Rq(n) the set of all such represen- tations. Consider the three basic questions of the previous chapter: (1) When is Rq(n) non-empty ? (2) If non-empty, how large Rq(n)is? (3) How is the set Rq(n) distributed as n varies ? In a suitable sense, a good portion of the answers to these question will be similar to the four and three square quadratic forms; but there will be major di↵erences coming from the fact that – det and disc are indefinite quadratic forms (have signature (2, 2) and (2, 1) over the reals), – det and disc admit isotropic vectors: there exist x Q4 (resp. Q3) such that det(x)=0(resp.disc(x) = 0). 2 1. Existence and number of representations by the determinant As the name suggest, determining Rdet(n) is equivalent to determining the integral 2 2 matrices of determinant n: ⇥ (n) ab Rdet(n) M (Z)= g = M2(Z), det(g)=n . ' 2 { cd 2 } ✓ ◆ n 0 Observe that the diagonal matrix a = has determinant n, and any 01 ✓ ◆ other matrix in the orbit SL2(Z).a is integral and has the same determinant.
    [Show full text]
  • Analytic Geometry of Space
    Hmerican flDatbematical Series E. J. TOWNSEND GENERAL EDITOR MATHEMATICAL SERIES While this series has been planned to meet the needs of the student is who preparing for engineering work, it is hoped that it will serve equally well the purposes of those schools where mathe matics is taken as an element in a liberal education. In order that the applications introduced may be of such character as to interest the general student and to train the prospective engineer in the kind of work which he is most likely to meet, it has been the policy of the editors to select, as joint authors of each text, a mathemati cian and a trained engineer or physicist. The following texts are ready: I. Calculus. By E. J. TOWNSEND, Professor of Mathematics, and G. A. GOOD- ENOUGH, Professor of Thermodynamics, University of Illinois. $2.50. II. Essentials of Calculus. By E. J. TOWNSEND and G. A. GOODENOUGH. $2.00. III. College Algebra. By H. L. RIETZ, Assistant Professor of Mathematics, and DR. A. R. CRATHORNE, Associate in Mathematics in the University of Illinois. $1.40. IV. Plane Trigonometry, with Trigonometric and Logarithmic Tables. By A. G. HALL, Professor of Mathematics in the University of Michigan, and F. H. FRINK, Professor of Railway Engineering in the University of Oregon. $1.25. V. Plane and Spherical Trigonometry. (Without Tables) By A. G. HALL and F. H. FRINK. $1.00. VI. Trigonometric and Logarithmic Tables. By A. G. HALL and F. H. FRINK. 75 cents. The following are in preparation: Plane Analytical Geometry. ByL. W. DOWLING, Assistant Professor of Mathematics, and F.
    [Show full text]