Foundations of the Quaternion Quantum Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Measurement of the Speed of Gravity
Measurement of the Speed of Gravity Yin Zhu Agriculture Department of Hubei Province, Wuhan, China Abstract From the Liénard-Wiechert potential in both the gravitational field and the electromagnetic field, it is shown that the speed of propagation of the gravitational field (waves) can be tested by comparing the measured speed of gravitational force with the measured speed of Coulomb force. PACS: 04.20.Cv; 04.30.Nk; 04.80.Cc Fomalont and Kopeikin [1] in 2002 claimed that to 20% accuracy they confirmed that the speed of gravity is equal to the speed of light in vacuum. Their work was immediately contradicted by Will [2] and other several physicists. [3-7] Fomalont and Kopeikin [1] accepted that their measurement is not sufficiently accurate to detect terms of order , which can experimentally distinguish Kopeikin interpretation from Will interpretation. Fomalont et al [8] reported their measurements in 2009 and claimed that these measurements are more accurate than the 2002 VLBA experiment [1], but did not point out whether the terms of order have been detected. Within the post-Newtonian framework, several metric theories have studied the radiation and propagation of gravitational waves. [9] For example, in the Rosen bi-metric theory, [10] the difference between the speed of gravity and the speed of light could be tested by comparing the arrival times of a gravitational wave and an electromagnetic wave from the same event: a supernova. Hulse and Taylor [11] showed the indirect evidence for gravitational radiation. However, the gravitational waves themselves have not yet been detected directly. [12] In electrodynamics the speed of electromagnetic waves appears in Maxwell equations as c = √휇0휀0, no such constant appears in any theory of gravity. -
Accommodating Retrocausality with Free Will Yakir Aharonov Chapman University, [email protected]
Chapman University Chapman University Digital Commons Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and Faculty Articles and Research Research 2016 Accommodating Retrocausality with Free Will Yakir Aharonov Chapman University, [email protected] Eliahu Cohen Tel Aviv University Tomer Shushi University of Haifa Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles Part of the Quantum Physics Commons Recommended Citation Aharonov, Y., Cohen, E., & Shushi, T. (2016). Accommodating Retrocausality with Free Will. Quanta, 5(1), 53-60. doi:http://dx.doi.org/10.12743/quanta.v5i1.44 This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Accommodating Retrocausality with Free Will Comments This article was originally published in Quanta, volume 5, issue 1, in 2016. DOI: 10.12743/quanta.v5i1.44 Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/334 Accommodating Retrocausality with Free Will Yakir Aharonov 1;2, Eliahu Cohen 1;3 & Tomer Shushi 4 1 School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. E-mail: [email protected] 2 Schmid College of Science, Chapman University, Orange, California, USA. E-mail: [email protected] 3 H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
Quaternion Zernike Spherical Polynomials
MATHEMATICS OF COMPUTATION Volume 84, Number 293, May 2015, Pages 1317–1337 S 0025-5718(2014)02888-3 Article electronically published on August 29, 2014 QUATERNION ZERNIKE SPHERICAL POLYNOMIALS J. MORAIS AND I. CAC¸ AO˜ Abstract. Over the past few years considerable attention has been given to the role played by the Zernike polynomials (ZPs) in many different fields of geometrical optics, optical engineering, and astronomy. The ZPs and their applications to corneal surface modeling played a key role in this develop- ment. These polynomials are a complete set of orthogonal functions over the unit circle and are commonly used to describe balanced aberrations. In the present paper we introduce the Zernike spherical polynomials within quater- nionic analysis ((R)QZSPs), which refine and extend the Zernike moments (defined through their polynomial counterparts). In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4). (R)QZSPs are orthonormal in the unit ball. The representation of these functions in terms of spherical monogenics over the unit sphere are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of their fundamental properties and a further second or- der homogeneous differential equation are also discussed. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QZSPs are new in literature and have some consequences that are now under investigation. 1. Introduction 1.1. The Zernike spherical polynomials. The complex Zernike polynomials (ZPs) have long been successfully used in many different fields of optics. -
Bell's Theorem and Its Tests
PHYSICS ESSAYS 33, 2 (2020) Bell’s theorem and its tests: Proof that nature is superdeterministic—Not random Johan Hanssona) Division of Physics, Lulea˚ University of Technology, SE-971 87 Lulea˚, Sweden (Received 9 March 2020; accepted 7 May 2020; published online 22 May 2020) Abstract: By analyzing the same Bell experiment in different reference frames, we show that nature at its fundamental level is superdeterministic, not random, in contrast to what is indicated by orthodox quantum mechanics. Events—including the results of quantum mechanical measurements—in global space-time are fixed prior to measurement. VC 2020 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-33.2.216] Resume: En analysant l’experience de Bell dans d’autres cadres de reference, nous demontrons que la nature est super deterministe au niveau fondamental et non pas aleatoire, contrairement ace que predit la mecanique quantique. Des evenements, incluant les resultats des mesures mecaniques quantiques, dans un espace-temps global sont fixes avant la mesure. Key words: Quantum Nonlocality; Bell’s Theorem; Quantum Measurement. Bell’s theorem1 is not merely a statement about quantum Registered outcomes at either side, however, are classi- mechanics but about nature itself, and will survive even if cal objective events (for example, a sequence of zeros and quantum mechanics is superseded by an even more funda- ones representing spin up or down along some chosen mental theory in the future. Although Bell used aspects of direction), e.g., markings on a paper printout ¼ classical quantum theory in his original proof, the same results can be facts ¼ events ¼ points defining (constituting) global space- obtained without doing so.2,3 The many experimental tests of time itself. -
Hypercomplex Algebras and Their Application to the Mathematical
Hypercomplex Algebras and their application to the mathematical formulation of Quantum Theory Torsten Hertig I1, Philip H¨ohmann II2, Ralf Otte I3 I tecData AG Bahnhofsstrasse 114, CH-9240 Uzwil, Schweiz 1 [email protected] 3 [email protected] II info-key GmbH & Co. KG Heinz-Fangman-Straße 2, DE-42287 Wuppertal, Deutschland 2 [email protected] March 31, 2014 Abstract Quantum theory (QT) which is one of the basic theories of physics, namely in terms of ERWIN SCHRODINGER¨ ’s 1926 wave functions in general requires the field C of the complex numbers to be formulated. However, even the complex-valued description soon turned out to be insufficient. Incorporating EINSTEIN’s theory of Special Relativity (SR) (SCHRODINGER¨ , OSKAR KLEIN, WALTER GORDON, 1926, PAUL DIRAC 1928) leads to an equation which requires some coefficients which can neither be real nor complex but rather must be hypercomplex. It is conventional to write down the DIRAC equation using pairwise anti-commuting matrices. However, a unitary ring of square matrices is a hypercomplex algebra by definition, namely an associative one. However, it is the algebraic properties of the elements and their relations to one another, rather than their precise form as matrices which is important. This encourages us to replace the matrix formulation by a more symbolic one of the single elements as linear combinations of some basis elements. In the case of the DIRAC equation, these elements are called biquaternions, also known as quaternions over the complex numbers. As an algebra over R, the biquaternions are eight-dimensional; as subalgebras, this algebra contains the division ring H of the quaternions at one hand and the algebra C ⊗ C of the bicomplex numbers at the other, the latter being commutative in contrast to H. -
Arxiv:0908.1787V1 [Quant-Ph] 13 Aug 2009 Ematical Underpinning
August 13, 2009 18:17 Contemporary Physics QuantumPicturalismFinal Contemporary Physics Vol. 00, No. 00, February 2009, 1{32 RESEARCH ARTICLE Quantum picturalism Bob Coecke∗ Oxford University Computing Laboratory, Wolfson Building, Parks Road, OX1 3QD Oxford, UK (Received 01 02 2009; final version received XX YY ZZZZ) Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the `no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of `quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is `low-level'. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. -
Dynamical Relaxation to Quantum Equilibrium
Dynamical relaxation to quantum equilibrium Or, an account of Mike's attempt to write an entirely new computer code that doesn't do quantum Monte Carlo for the first time in years. ESDG, 10th February 2010 Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] { Typeset by FoilTEX { 1 What I talked about a month ago (`Exchange, antisymmetry and Pauli repulsion', ESDG Jan 13th 2010) I showed that (1) the assumption that fermions are point particles with a continuous objective existence, and (2) the equations of non-relativistic QM, allow us to deduce: • ..that a mathematically well-defined ‘fifth force', non-local in character, appears to act on the particles and causes their trajectories to differ from the classical ones. • ..that this force appears to have its origin in an objectively-existing `wave field’ mathematically represented by the usual QM wave function. • ..that indistinguishability arguments are invalid under these assumptions; rather antisymmetrization implies the introduction of forces between particles. • ..the nature of spin. • ..that the action of the force prevents two fermions from coming into close proximity when `their spins are the same', and that in general, this mechanism prevents fermions from occupying the same quantum state. This is a readily understandable causal explanation for the Exclusion principle and for its otherwise inexplicable consequences such as `degeneracy pressure' in a white dwarf star. Furthermore, if assume antisymmetry of wave field not fundamental but develops naturally over the course of time, then can see character of reason for fermionic wave functions having symmetry behaviour they do. -
Experimental Determination of the Speed of Light by the Foucault Method
Experimental Determination of the Speed of Light by the Foucault Method R. Price and J. Zizka University of Arizona The speed of light was measured using the Foucault method of reflecting a beam of light from a rotating mirror to a fixed mirror and back creating two separate reflected beams with an angular displacement that is related to the time that was required for the light beam to travel a given distance to the fixed mirror. By taking measurements relating the displacement of the two light beams and the angular speed of the rotating mirror, the speed of light was found to be (3.09±0.204)x108 m/s, which is within 2.7% of the defined value for the speed of light. 1 Introduction The goal of the experiment was to experimentally measure the speed of light, c, in a vacuum by using the Foucault method for measuring the speed of light. Although there are many experimental methods available to measure the speed of light, the underlying principle behind all methods on the simple kinematic relationship between constant velocity, distance and time given below: D c = (1) t In all forms of the experiment, the objective is to measure the time required for the light to travel a given distance. The large magnitude of the speed of light prevents any direct measurements of the time a light beam going across a given distance similar to kinematic experiments. Galileo himself attempted such an experiment by having two people hold lights across a distance. One of the experiments would put out their light and when the second observer saw the light cease, they would put out theirs. -
Wave-Particle Duality Relation with a Quantum Which-Path Detector
entropy Article Wave-Particle Duality Relation with a Quantum Which-Path Detector Dongyang Wang , Junjie Wu * , Jiangfang Ding, Yingwen Liu, Anqi Huang and Xuejun Yang Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China; [email protected] (D.W.); [email protected] (J.D.); [email protected] (Y.L.); [email protected] (A.H.); [email protected] (X.Y.) * Correspondence: [email protected] Abstract: According to the relevant theories on duality relation, the summation of the extractable information of a quanton’s wave and particle properties, which are characterized by interference visibility V and path distinguishability D, respectively, is limited. However, this relation is violated upon quantum superposition between the wave-state and particle-state of the quanton, which is caused by the quantum beamsplitter (QBS). Along another line, recent studies have considered quantum coherence C in the l1-norm measure as a candidate for the wave property. In this study, we propose an interferometer with a quantum which-path detector (QWPD) and examine the generalized duality relation based on C. We find that this relationship still holds under such a circumstance, but the interference between these two properties causes the full-particle property to be observed when the QWPD system is partially present. Using a pair of polarization-entangled photons, we experimentally verify our analysis in the two-path case. This study extends the duality relation between coherence and path information to the quantum case and reveals the effect of quantum superposition on the duality relation. -
Infinite Potential Show Title: Generic Show Episode #101 Date: 3/17/20 Transcribed by Daily Transcription Tre
INFINITE POTENTIAL SHOW TITLE: GENERIC SHOW EPISODE #101 DATE: 3/17/20 TRANSCRIBED BY DAILY TRANSCRIPTION_TRE 00:00:28 DAVID BOHM People talked about the world, and I said, "Where does it end?" and, uh, uh... MALE And what answer did they give? DAVID BOHM Well, they-I never, uh, I don't remember. It wasn't terribly convincing I suppose. [LAUGH] DR. DAVID C. It was, uh, a night, and we were SCHRUM walking under the stars, black sky, and he looked up to the stars, and he said, "Ordinarily, when we look to the sky and look to the stars, we think of stars as objects far out and vast spaces between them." He said, "There's another way we can look at it. We can look at the vacuum at the emptiness instead as a planum, as infinitely full rather than infinitely empty. And that the material objects themselves are like little bubbles, little vacancies in this vast sea." 00:01:25 DR. DAVID C. So David Bohm, in a sense, was SCHRUM using that view to have me look at the stars and to have a sense of the night sky all of a sudden in a different way, as one whole living organism and these little bits that we call matter as sort to just little holes in it. DR. DAVID C. He often mentioned just one other SCHRUM aspect of this, that this planum, in a cubic centimeter of the planum, there's more, uh, energy matter than in the entire visible Page 2 of 62 universe.