Web-Based Visualization of 3D Geospatial Data Using Java3d

Total Page:16

File Type:pdf, Size:1020Kb

Web-Based Visualization of 3D Geospatial Data Using Java3d Exploring Geovisualization Web-Based Visualization of 3D Geospatial Data Gobe Hobona, Philip James, and David Fairbairn Using Java3D University of Newcastle upon Tyne eb-based visualization of 3D geospatial tion for Standardization (ISO), which has adopted the Wdata has long been an area of research Simple Features model as the ISO19125 specification.4 within the geospatial information community. It’s a We’ve developed GeoDOVE, a Java3D-based prototype proven reliable and effective method for integrating het- system that retrieves geospatial data from conventional erogeneous data sets from different application domains spatial database servers, allows modification of the visu- and communicating the contents to the user. Early alization during runtime, and lets users remotely modi- research used the Virtual Reality Modeling Language fy attributes using the Structured Query Language (SQL). (VRML) for creating 2.5D and 3D virtual worlds. Since then, however, researchers have made significant GeoDOVE system architecture advances in geospatial information technology that could The current version of VRML⎯VRML97⎯offers two potentially help improve Web-based 3D geographic infor- approaches for linking a 3D model to external programs mation systems (GISs). For example, the geospatial infor- and data sources: mation community has standardized relational models for holding 3D spa- ■ script nodes and Spatial database servers allow tial data. Researchers have also made ■ the Java external authoring interface (EAI). for the storage and access of significant advances in the develop- 3D geospatial data using Open ment of spatial database engines Although the EAI provides a more flexible approach Geospatial Consortium such as MySQL (see http://www. to linking a VRML model to external programs than the standards. The Geospatial mysql.org), Oracle, and PostgreSQL/ script node, vendors have found it particularly unstable PostGIS (see http://www.postgresql. when implemented because the Java classes varied Database Online Visualization org). Furthermore, Sun Microsys- across vendors.5 A possible solution is a platform-inde- Environment (GeoDOVE) is a tems’ Java3D offers new develop- pendent and Web-deployable 3D graphics environment. prototype 3D Web-based ments in Web-based 3D visualiza- Of the four rendering engines that we examined in our geographic information system tion. Because of these advances, the study⎯DirectX, OpenGL, OpenGL Performer, and ⎯ that demonstrates how Java3D GIS community can potentially dis- Java3D only Java3D met both requirements. seminate both 3D spatial data and The official GeoVRML Working Group has raised can reduce bandwidth and functionality to anywhere on the other limitations of VRML and its geospatial extension, allow direct connectivity to World Wide Web. GeoVRML (see http://www.geovrml.org). Support for spatially enabled database Although Web-based tools for 3D more coordinate systems, larger grid-based terrain rep- systems. hydrological,1 urban,2 and geologi- resentation, data interchange, higher resolution, and cal modeling3 exist, they focus on accuracy could overcome some of these limitations. The individual simulation models and extract data only from GeoDOVE system addresses some of these issues. Its specific data sources. Our study aimed to determine architecture, shown in Figure 1, includes different spa- whether existing technologies allowed for the develop- tially enabled relational database engines and files ment of a Web-based GIS application that could offer encoded in the Geography Markup Language. It current- dynamic connectivity to conventional relational data- ly supports PostGIS, MySQL, and the ArcGIS Spatial base management systems (RDBMS) holding standard Database Engine (ArcSDE). These relational database 3D geospatial data. By standard geospatial data we’re engines use the OGC’s Simple Features model for SQL referring to the Open Geospatial Consortium Simple Fea- (SFS), shown in Figure 2, which is also implemented tures data model. The OGC is an international organiza- within GeoDOVE’s internal geometry model. This pro- tion that promotes interoperability between GISs and vides convenient mappings between objects in the data their vendors. It’s allied to the International Organiza- source and objects in the client application. 28 July/August 2006 Published by the IEEE Computer Society 0272-1716/06/$20.00 © 2006 IEEE Authorized licensed use limited to: Newcastle University. Downloaded on July 09,2010 at 13:11:34 UTC from IEEE Xplore. Restrictions apply. Using the Java database connectivity (JDBC) API, Server side Client side GeoDOVE can connect to and send an SQL query to any of these spatially enabled database engines. GeoDOVE PostGIS parses and reconstructs the query results into its own internal geometry object model. Thus, rather than retriev- ∗ ing data using the conventional select from layer ArcGIS query, which retrieves all records in a table, we can use spatial more sophisticated SQL queries to filter the retrieved database records⎯for example, select field1, field2, engine Java Java 3D-based field3 from table1 where (field1 = 100 or database GeoDOVE field1 = 200) and field3 like “A∗”. If the appli- connectivity applet cation is connected to a spatially enabled database engine MySQL such as PostGIS, GeoDOVE can invoke spatial queries on the server⎯for example, select geom from geom_ table where distance(geom, geomfromtext Geography − < Markup HTTP (‘point (100000 200000)’, 1)) 100. This Language server capability lets the system use some of the spatial data- Language Shapefileshapefile base engines’ computational resources. Spatial compu- SHP tations can impose a significant load on the client if performed on the client machine. In contrast, server-side spatial computations let the user send spatially enabled SQL queries to the server. The server sends the resultant layers back to the client, where they require no further 1 The GeoDOVE system architecture. processing. The JDBC also makes writing to the data source Geometry SpatialReferencingSystem possible. For example, the user could add a field that stores the 3D distance from a particular point to each 3D shape in the data source. GeoDOVE then calculates the 3D distance using Java3D and updates the database through the SQL commands Point Curve Surface GeometryCollection alter table and set. The ability to write back to a database also makes persistent storage of pro- ject information possible. This information includes references to all previously loaded lay- ers, symbol settings, and the viewer’s last known LineString Polygon MultiSurface MultiCurve MultiPoint position and orientation. Most viewers for VRML, X3D, and other 3D file formats don’t offer facilities for such persistent storage. The SFS model, the basis of the ISO19125 standard, defines a basic interface for vector Line LinearString MultiPolygon MultiLineString geospatial data types such as Points, LineStrings, and Polygons. This means that GISs that implement SFS encode their vec- tor geometries in much the same way, although Key: sometimes with different names for certain geometries. For example, PostGIS and MySQL Class A Class A use the well-known text format for returning Aggregation Inheritance geometries as ASCII text. Thus, they both refer (has-a) (is-a) to a concatenation of line segments as a LineString, or a MultiLineString for Class B Class B concatenation of multiple LineStrings. In contrast, ArcSDE refers to a similar geometry 2 Class hierarchy of Open Geospatial Consortium Simple Features model for SQL.4 type as a Polyline. A major limitation of VRML is that it doesn’t handle precision floating-point positioning⎯from Point3f double-precision floating-point numbers, offering only and Point3d classes, respectively⎯and therefore single-precision floating-point numbers. Because geo- maintains positional accuracy. The geospatial compo- graphical data⎯particularly grid or geographical ref- nent of X3D, VRML’s successor, will also offer double- erences⎯is often supplied in double-precision numbers, precision floating-point numbers. this limitation results in the loss of positional accuracy.5 Each geometry feature or feature collection in SFS GeoVRML supports the use of a single, static local coor- contains a reference to a defined coordinate system, the dinate system for dealing with floating-point limitations. spatial reference system (SRS). Typically, the server en- Comparatively, Java3D offers both single- and double- codes geographic information using either a geodetic IEEE Computer Graphics and Applications 29 Authorized licensed use limited to: Newcastle University. Downloaded on July 09,2010 at 13:11:34 UTC from IEEE Xplore. Restrictions apply. Exploring Geovisualization Key: segment has two fewer Point3f or Point3d Vertex objects when using a QuadArray than when using a TriangleArray. Vertex Figure 3a shows four vertices and their order within (a) sequence direction a LineString object. To extrude the LineString, GeoDOVE adds two vertices to each pair of adjacent vertices in a line segment (defined as two adjacent ver- tices in a LineString). The result is a set of four ver- Wall tices defining a four-sided wall for each line segment in height the original LineString, as Figure 3b shows. Figure 4 (b) shows polygons extruded using the QuadArray class. Whereas LineStrings don’t need a roof structure, 3 Vertex ordering for the extrusion of LineString and LinearRing GeoDOVE completes each extruded LinearRing by (closed LineString) geometries: (a) LineString before extrusion
Recommended publications
  • Standards and Guidelines for Cadastral Surveys Using GPS
    Table of Contents Foreword ........................................................................................................................................ 3 Part One: Standards for Positional Accuracy ................................................................................ 4 Part Two: GPS Survey Guidelines ................................................................................................ 5 Section One: Field Data Acquisition Methods Section Two: Field Survey Operations and Procedures Cadastral Project Control Cadastral Measurements Section Three: Data Processing and Analysis Section Four: Project Documentation Appendix A: Definitions ............................................................................................................. 16 Appendix B: Computation of Accuracies ................................................................................... 18 Appendix C: References ............................................................................................................. 19 Attachment 1-2 Foreword These Standards and Guidelines provide guidance to the Government cadastral surveyor and other land surveyors in the use of Global Positioning System (GPS) technology to perform Public Land Survey System (PLSS) surveys of the Public Lands of the United States of America. Many sources were consulted during the preparation of this document. These sources included other GPS survey standards and guidelines, technical reports and manuals. Opinions and reviews were also sought from public and
    [Show full text]
  • National Spatial Reference System: "Positioning Changes for 2022"
    National Spatial Reference System “Positioning Changes for 2022” Civil GPS Service Interface Committee Meeting Miami, Florida September 24, 2018 Denis Riordan, PSM NOAA, National Geodetic Survey [email protected] U.S. Department of Commerce National Oceanic & Atmospheric Administration National Geodetic Survey Mission: To define, maintain & provide access to the National Spatial Reference System (NSRS) to meet our Nation’s economic, social & environmental needs National Spatial Reference System * Latitude * Scale * Longitude * Gravity * Height * Orientation & their variations in time U. S. Geometric Datums in 2022 National Spatial Reference System (NSRS) Improvements in the Horizontal Datums TIME NETWORK METHOD NETWORK SPAN ACCURACY OF REFERENCE NAD 27 1927-1986 10 meter (1 part in 100,000) TRAVERSE & TRIANGULATION - GROUND MARKS USED FOR NAD83(86) 1986-1990 1 meter REFERENCING (1 part THE in 100,000) NSRS. NAD83(199x)* 1990-2007 0.1 meter GPS B- orderBECOMES (1 part THE in MEANS 1 million) OF POSITIONING – STILL GRND MARKS. HARN A-order (1 part in 10 million) NAD83(2007) 2007 - 2011 0.01 meter 0.01 meter GPS – CORS STATIONS ARE MEANS (CORS) OF REFERENCE FOR THE NSRS. NAD83(2011) 2011 - 2022 0.01 meter 0.01 meter (CORS) NSRS Reference Basis Old Method - Ground Current Method - GNSS Stations Marks (Terrestrial) (CORS) Why Replace NAD83? • Datum based on best known information about the earth’s size and shape from the early 1980’s (45 years old), and the terrestrial survey data of the time. • NAD83 is NON-geocentric & hence inconsistent w/GNSS . • Necessary for agreement with future ubiquitous positioning of GNSS capability. Future Geometric (3-D) Reference Frame Blueprint for 2022: Part 1 – Geometric Datum • Replace NAD83 with new geometric reference frame – by 2022.
    [Show full text]
  • DOTD Standards for GPS Data Collection Accuracy
    Louisiana Transportation Research Center Final Report 539 DOTD Standards for GPS Data Collection Accuracy by Joshua D. Kent Clifford Mugnier J. Anthony Cavell Larry Dunaway Louisiana State University 4101 Gourrier Avenue | Baton Rouge, Louisiana 70808 (225) 767-9131 | (225) 767-9108 fax | www.ltrc.lsu.edu TECHNICAL STANDARD PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/LA.539 4. Title and Subtitle 5. Report Date DOTD Standards for GPS Data Collection Accuracy September 2015 6. Performing Organization Code 127-15-4158 7. Author(s) 8. Performing Organization Report No. Kent, J. D., Mugnier, C., Cavell, J. A., & Dunaway, L. Louisiana State University Center for GeoInformatics 9. Performing Organization Name and Address 10. Work Unit No. Center for Geoinformatics Department of Civil and Environmental Engineering 11. Contract or Grant No. Louisiana State University LTRC Project Number: 13-6GT Baton Rouge, LA 70803 State Project Number: 30001520 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Louisiana Department of Transportation and Final Report Development 6/30/2014 P.O. Box 94245 Baton Rouge, LA 70804-9245 14. Sponsoring Agency Code 15. Supplementary Notes Conducted in Cooperation with the U.S. Department of Transportation, Federal Highway Administration 16. Abstract The Center for GeoInformatics at Louisiana State University conducted a three-part study addressing accurate, precise, and consistent positional control for the Louisiana Department of Transportation and Development. First, this study focused on Departmental standards of practice when utilizing Global Navigational Satellite Systems technology for mapping-grade applications. Second, the recent enhancements to the nationwide horizontal and vertical spatial reference framework (i.e., datums) is summarized in order to support consistent and accurate access to the National Spatial Reference System.
    [Show full text]
  • UNIT-II GPS Systems:NAVSTAR-GLONAAS-Beidou-QZSS-IRNSS-GPS Receivers Based On: Data Type and Yield-Realization of Channels-Signal
    UNIT-II GPS systems:NAVSTAR-GLONAAS-Beidou-QZSS-IRNSS-GPS receivers based on: Data type and yield-Realization of channels-Signal structure:Course Acquisition(code)-Carrier ranging and Navigational message Global Positioning System (GPS), originally Navstar GPS,[1] is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force.[2] It is one of the global navigation satellite systems (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites.[3] Obstacles such as mountains and buildings block the relatively weak GPS signals. The GPS does not require the user to transmit any data, and it operates independently of any telephonic or internet reception, though these technologies can enhance the usefulness of the GPS positioning information. The GPS provides critical positioning capabilities to military, civil, and commercial users around the world. The United States government created the system, maintains it, and makes it freely accessible to anyone with a GPS receiver.[4][better source needed] The GPS project was started by the U.S. Department of Defense in 1973, with the first prototype spacecraft launched in 1978 and the full constellation of 24 satellites operational in 1993. Originally limited to use by the United States military, civilian use was allowed from the 1980s following an executive order from President Ronald Reagan.[5] Advances in technology and new demands on the existing system have now led to efforts to modernize the GPS and implement the next generation of GPS Block IIIA satellites and Next Generation Operational Control System (OCX).[6] Announcements from Vice President Al Gore and the Clinton Administration in 1998 initiated these changes, which were authorized by the U.S.
    [Show full text]
  • Gis Sections Proposal
    COORDINATING WORKING PARTY ON FISHERY STATISTICS Sixth Meeting of the Aquaculture Subject Group (AS) and Twenty-seventh meeting of the Fisheries Subject Group (FS) GIS TECHNICAL WORKING GROUP FOR THE CWP HANDBOOK - GIS SECTIONS PROPOSAL Emmanuel Blondel (FAO) – [email protected] 1 CWP – AS 6th Session and FS 27th Session Rome, Italy – 15-16 May 2019 GIS Section Overview Title Definition / Scope Target Spatial reference systems Standards to use for handling a spatial reference system CWP Handbook (SRS) used with fisheries dataset. GIS Section Definitions; rationale; equivalent terminologies; recommended standard format & notations; use of Spatial Reference Identifiers (SRIDs); SRS use cases Geographic coordinates Standards for handling properly geographic coordinates CWP Handbook for reference shapes and fisheries datasets. GIS Section Definitions; rationale; recommended standard formats; Geographic coordinates use cases. Geographic classification Geographic classification and coding systems used for CWP Handbook and coding systems fisheries data. GIS Section General; Types of geographic classification systems (Irregular areas, grid reporting systems, Others); Main geographic Water main areas classification systems (FAO Major Fishing areas, Breakdown of major fishing areas; Geographic coding systems; Geographic information Standards format for data and metadata, and related CWP Data sharing formats & protocols standard protocols. and protocols/ Data formats and protocols; Metadata formats and protocols; Geospatial Section Geographic information Geographic information list of resources of interest for CWP Website resources of interest for CWP the CWP. Geographic information reference web-catalogues; GIS datasets of primary interest; 2 CWP – AS 6th Session and FS 27th Session Rome, Italy – 15-16 May 2019 GIS Section Overview • Handbook GIS Section proposal • Title: Geographic Dimension • Structure 1.
    [Show full text]
  • Mind the Gap! a New Positioning Reference
    A new positioning reference Why is the United States adopting NATRF2022? What are we doing about this in Canada? We want to hear from you! • The Canadian Geodetic Survey and the United States • Improved compatibility with Global Navigation • The Canadian Geodetic Survey is working closely National Geodetic Survey have collaborated for Satellite Systems (GNSS), such as GPS, is driving this with the United States National Geodetic Survey in • Send us your comments, the challenges you over a century to provide the fundamental reference change. The geometric reference frames currently defining reference frames to ensure they will also foresee, and any concerns to help inform our path Mind the gap! systems for latitude, longitude and height for their used in Canada and the United States, although be suitable for Canada. forward to either of these organizations: respective countries. compatible with each other, are offset by 2.2 m from • Geodetic agencies from across Canada are A new positioning reference the Earth’s geocentre, whereas GNSS are geocentric. - Canadian Geodetic Survey: nrcan. • Together our reference systems have evolved collaborating on reference system improvements geodeticinformation-informationgeodesique. to meet today’s world of GPS and geographical • Real-time decimetre-level accuracies directly from through the Canadian Geodetic Reference System [email protected] NATRF2022 information systems, while supporting legacy datums GNSS satellites are expected to be available soon. Committee, a working committee of the Canadian
    [Show full text]
  • OMB Circular No. A-16 Revised
    OMB Circular No. A-16 Revised M-11-03, Issuance of OMB Circular A-16 Supplemental Guidance (November 10, 2010) (34 pages, 530 kb) August 19, 2002 TO THE HEADS OF EXECUTIVE DEPARTMENTS AND ESTABLISHMENTS SUBJECT: Coordination of Geographic Information and Related Spatial Data Activities This Circular provides direction for federal agencies that produce, maintain or use spatial data either directly or indirectly in the fulfillment of their mission. This Circular establishes a coordinated approach to electronically develop the National Spatial Data Infrastructure and establishes the Federal Geographic Data Committee (FGDC). The Circular has been revised from the 1990 version to reflect changes in technology, further describe the components of the National Spatial Data Infrastructure (NSDI), and assign agency roles and responsibilities for development of the NSDI. The revised Circular names the Deputy Director for Management of OMB as Vice-Chair of the Federal Geographic Data Committee. TABLE OF CONTENTS BACKGROUND 1. What is the purpose of this Circular? 2. What is the National Spatial Data Infrastructure (NSDI)? a. What is the vision of the NSDI? b. What are the components of the NSDI? (1) What is a data theme? (2) What are metadata? (3) What is the National Spatial Data Clearinghouse? (4) What is a standard? (5) How are NSDI standards developed? (6) What is the importance of collaborative partnerships? (7) What are the federal activities and technologies that support the NSDI? 3. What are the benefits of the NSDI? 4. What is the Federal Geographic Data Committee (FGDC)? a. What is the FGDC structure and membership? b. What are the FGDC procedures? POLICY 5.
    [Show full text]
  • Oracle Spatial 11G Technical Overview
    <Insert Picture Here> Oracle Spatial 11g Dr. Siva Ravada New in Oracle Spatial 11g • 3D Support • Spatial Web Services • Network Data Model • GeoRaster • Performance Improvements 3D Applications • Location-based services • Augmented reality • GIS Analytical Modeling • Terrain (2.5D) and 3D objects • City Planning/Administration • Infrastructure Design • Accurate descriptions of objects 3D Mash-ups GIS Analytical Modeling & Simulation Flood Plain Analysis Petroleum Exploration CAD Infrastructure Design Courtesy Parsons Brinckerhoff Simulation, Gaming, and VR Customer Requirements • Enterprise-class RDBMS to manage ALL geospatial types • 2D, 3D, Rasters, Networks, Topology, Attributes • Native type support, indexing, and analysis • Support for coordinate systems • Standards based: SQL, Java, .NET • Addresses range of 3D application domains • GIS, CAD/CAM • City Modeling, environmental analysis • Building City models (Collada, CityGML) • Real Estate, asset management • Personal navigation • VR, gaming, simulation • Geo-engineering (CAD) • Addresses large volumes of 3D point data • Laser scanning (LIDAR, sonar) • Surfaces (TINS, DEMS) Technology Trends in 3D • Massive new sensor hardware capabilities • Automated Data Capture with millions of points • Increased productivity in 3D data management workflow • Automatic and semi-automatic extraction of features from raw data • Improve performance and scalability of existing workflows • Bridging gap between GIS and CAD • Bring 3D to Mainstream Business Applications • Current applications do navigation
    [Show full text]
  • Geographic Information — Geography Markup Language (GML)
    AS/NZS ISO 19136.1:2020 ISO 19136-1:2020 Australian/New Zealand Standard™ Geographic information — Geography Markup Language (GML) Part 1: Fundamentals AS/NZS ISO 19136.1:2020 This Joint Australian/New Zealand Standard™ was prepared by Joint Technical Committee IT-004, Geographical Information/Geomatics. It was approved on behalf of the Council of Standards Australia on 8 July 2020 and by the New Zealand Standards Approval Board on 5 August 2020. This Standard was published on 28 August 2020. The following are represented on Committee IT-004: ANZLIC — The Spatial Information Council Australian Antarctic Division Australian Bureau of Meteorology Australian Maritime Safety Authority CSIRO Curtin University of Technology Department of Agriculture, Water and the Environment Department of Defence (Australian Government) Geoscience Australia Science New Zealand Services Australia (Australian Government) Spatial Industries Business Association University of Melbourne This Standard was issued in draft form for comment as DR AS/NZS ISO 19136.1:2020. Keeping Standards up-to-date Ensure you have the latest versions of our publications and keep up-to-date about Amendments, Rulings, Withdrawals, and new projects by visiting: www.standards.org.au www.standards.govt.nz ISBN 978 1 76072 962 2 AS/NZS ISO 19136.1:2020 ISO 19136-1:2020 Australian/New Zealand Standard™ Geographic information — Geography Markup Language (GML) Part 1: Fundamentals Originated as AS/NZS ISO 19136:2008. Jointly revised and redesignated as AS/NZS ISO 19136.1:2020. COPYRIGHT © ISO 2020 — All rights reserved © Standards Australia Limited/the Crown in right of New Zealand, administered by the New Zealand Standards Executive 2020 All rights are reserved.
    [Show full text]
  • FDM 9-20 Spatial Reference Systems
    Facilities Development Manual Wisconsin Department of Transportation Chapter 9 Surveying and Mapping Section 20 Spatial Reference Systems FDM 9-20-1 General February 28, 2001 The discipline of surveying consists of determining or establishing relative positions of points above, on, or beneath the surface of the earth. In Wisconsin, there are two primary spatial reference systems for defining the location of a point: - The U.S. Public Land Survey System (PLSS). - The National Spatial Reference System (NSRS). The PLSS is based on a system of townships, ranges, and sections (see FDM 9-20-5). The PLSS provides the basis for almost all legal descriptions of land. The NSRS, which includes the former National Geodetic Reference System (NGRS), is a mathematical reference system (see FDM 9-20-10). The NSRS consists of precisely measured networks of geodetic control that support accurate mapping over large areas. To understand the roles of these reference systems, it is important to recognize that the PLSS was designed for land ownership purposes but not for accurate mapping, and the NSRS was designed for geodetic surveying and mapping but not for land ownership documentation. Since accurate property maps are becoming essential with digital-based ownership documents, it is important that there be a substantial link between the two reference systems. Methods are needed to utilize the spatial characteristics of the NSRS when addressing the location of landmarks. Fortunately, recent technological developments such as the Global Positioning System (GPS), electronic total station survey instruments, and computer aided drafting (CAD) now make the task of using the PLSS and NSRS together more efficient, economical, and practical.
    [Show full text]
  • GML in JPEG 2000 for Geographic Imagery (GMLJP2) Encoding Specification
    Open Geospatial Consortium Inc. Date: 2006-01-20 Reference number of this OGC® document: OGC 05-047r3 Version: 1.0.0 Category: OpenGIS® Encoding Specification Editors: Martin Kyle, David Burggraf, Sean Forde, Ron Lake GML in JPEG 2000 for Geographic Imagery (GMLJP2) Encoding Specification Copyright © 2006. Open Geospatial Consortium, Inc. All Rights Reserved. To obtain additional rights of use, visit http://www.opengeospatial.org/legal Document type: OpenGIS® Encoding Specification Document subtype: (none) Document stage: Approved Document language: English OGC 05-047r3 This page left intentionally blank. ii Copyright © 2006. Open Geospatial Consortium, Inc. All Rights Reserved. OGC 05-047r3 Contents Page 1 Scope ............................................................................................................................1 2 Conformance................................................................................................................1 3 Normative references...................................................................................................1 4 Terms and definitions..................................................................................................2 5 Conventions..................................................................................................................5 5.1 Abbreviated terms........................................................................................................5 5.2 Document terms and definitions.................................................................................6
    [Show full text]
  • Types of Coordinate Systems What Are Map Projections?
    What are map projections? Page 1 of 155 What are map projections? ArcGIS 10 Within ArcGIS, every dataset has a coordinate system, which is used to integrate it with other geographic data layers within a common coordinate framework such as a map. Coordinate systems enable you to integrate datasets within maps as well as to perform various integrated analytical operations such as overlaying data layers from disparate sources and coordinate systems. What is a coordinate system? Coordinate systems enable geographic datasets to use common locations for integration. A coordinate system is a reference system used to represent the locations of geographic features, imagery, and observations such as GPS locations within a common geographic framework. Each coordinate system is defined by: Its measurement framework which is either geographic (in which spherical coordinates are measured from the earth's center) or planimetric (in which the earth's coordinates are projected onto a two-dimensional planar surface). Unit of measurement (typically feet or meters for projected coordinate systems or decimal degrees for latitude–longitude). The definition of the map projection for projected coordinate systems. Other measurement system properties such as a spheroid of reference, a datum, and projection parameters like one or more standard parallels, a central meridian, and possible shifts in the x- and y-directions. Types of coordinate systems There are two common types of coordinate systems used in GIS: A global or spherical coordinate system such as latitude–longitude. These are often referred to file://C:\Documents and Settings\lisac\Local Settings\Temp\~hhB2DA.htm 10/4/2010 What are map projections? Page 2 of 155 as geographic coordinate systems.
    [Show full text]