Dicyemid Mesozoans: a Unique Parasitic Lifestyle and a Reduced Genome

Total Page:16

File Type:pdf, Size:1020Kb

Dicyemid Mesozoans: a Unique Parasitic Lifestyle and a Reduced Genome CORE Metadata, citation and similar papers at core.ac.uk Provided by OIST Institutional Repository Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome Author Tsai-Ming Lu, Miyuki Kanda, Hidetaka Furuya, Noriyuki Satoh journal or Genome Biology and Evolution publication title volume 11 number 8 page range 2232-2243 year 2019-07-26 Publisher Oxford University Press on behalf of the Society for Molecular Biology and Evolution Rights (C) 2019 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00001029/ doi: info:doi/10.1093/gbe/evz157 Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/) GBE Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome Tsai-Ming Lu1,4,*, Miyuki Kanda2, Hidetaka Furuya3,andNoriyukiSatoh1,* 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan 2DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan 3Department of Biology, Graduate School of Science, Osaka University, Japan 4Present address: Sars International Centre for Marine Molecular Biology, University of Bergen, Norway *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: July 16, 2019 Data deposition: This genome project has been registered at NCBI under BioProject accession PRJNA496385. Sequencing reads of the genome and transcriptomes have been deposited at the NCBI Sequence Read Archive (SRR8079359, SRR8079349-52, SRR8079348, SRR8079591, SRR8061618, SRR8061630-3). Genome and transcriptome assemblies have been deposited at DDBJ/ENA/GenBank (RDEW00000000) and NCBI Transcriptome Shotgun Assembly Sequence Database (GHAB00000000), respectively. A genome browser is available at https:// marinegenomics.oist.jp. Abstract Dicyemids, previously called “mesozoans” (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only 30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference tran- scriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to 67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies. Key words: mesozoan, dicyemids, unique parasite, genome, reduction. Introduction are used mainly for reproduction, where vermiform or infu- Dicyemids, together with orthonectids, were previously called soriform embryos develop. Ciliated epidermal cells absorb “mesozoans,” an animal group of intermediate complexity nutrients directly from host urine via endocytosis (Ridley between unicellular protozoans and multicellular metazoans 1968; Furuya and Tsuneki 2003). Dicyemids lack a digestive (Stunkard 1954; Lapan and Morowitz 1972; Furuya and tract, coelom, circulatory system, and other differentiated Tsuneki 2003; Brusca et al. 2016). Adults consist of only tissues (fig. 1A). This is probably the most extreme case of 30 cells (fig. 1A), and are parasitic in renal sacs of cephalo- secondary reduction of body plan complexity in spiralian pods. Their simplified bodies consist of three regions: a collate, parasites. a central axial cell, and ciliated epidermal cells (fig. 1A). The In contrast to the simple body plan, the life cycle of dicye- collate region (the most anterior eight cells) is used to attach mids is characterized by two reproductive modes (asexual and to the surface of octopus renal tissues. The central axial cell is sexual) and there are larva and adult stages in each mode surrounded by an outer layer of ciliated epidermal cells that (fig. 1A). After infecting an octopus host, the germinal cell ß The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 2232 Genome Biol. Evol. 11(8):2232–2243. doi:10.1093/gbe/evz157 Advance Access publication July 26, 2019 Dicyemid Mesozoans GBE A IN THE RENAL SAC B nematogen rhombogen Ecdysozoa PP C MP Orthonectida AX IN Dicyemida DV E Platyhelminthes AN AN Gastrotricha AG DI AX Mollusca Spiralia Annelida vermiform infusoriform embryo embryo IN THE SEA FIG.1.—The mesozoan, Dicyema japonicum, with a unique life cycle. (A) Life cycle of dicyemids. See the text for details. AG, agamete; AN, axial cell nucleus; AX, axial cell; C, calotte; DI, developing infusoriform embryo; DV, developing vermiform embryo; E, epidermal cell; IN, infusorigen; MP, metapolar cell; PP, propolar cell; Adapted and modified from Furuya and Tsuneki 2003.(B) Dicyemida is a member of Spiralia. develops into an asexual reproductive adult nematogen have recently been categorized as two independent taxa (fig. 1A). Then, inside the central axial cell of the nematogen, (Stunkard 1954; Mikhailov et al. 2016). The Mesozoa has the agamete (axoblast) develops into asexual reproductive affinity for the Rouphozoa (Platyhelminths and vermiform embryos (Furuya et al. 2003)(fig. 1A). While em- Gastrotricha), rather than for mollusks and annelids bryos mature, the vermiform larvae escape from the axial cell (fig. 1B)(Lu et al. 2017). The possession of a “spiralian of the nematogen and develop to new nematogens that at- peptide” by dicyemids also supports the position that tach to renal tissue of the same host, which increases the dicyemids are morphologically simplified spiralians population density. Once the population density inside a (Kobayashi et al. 1999; Lu et al. 2017). host reaches a certain threshold or if nematogens receive cer- Parasitism is more common in animals than previously tain chemical cues from the environment, nematogens trans- noted and has been reported in 15 of the 35 generally rec- form into sexually reproductive adults, called rhombogens ognized animal phyla (Weinstein and Kuris 2016). Parasitism is (fig. 1A)(Lapan and Morowitz 1972). Inside the central axial likely to have evolved independently >200 times (Wang et al. cell of a rhombogen, the hermaphroditic gonad (infusorigen) 2011). Each parasitism event reflects the interaction of a given generates sperm and eggs. Released gametes fertilize and host–parasite pair, and adaptations to a parasitic lifestyle vary develop into mature, free-swimming infusoriform larvae case by case. Parasites usually exhibit convergence, such as (fig. 1A)(Furuya et al. 1992),whichhavetosenseandlocate simplified morphology and complex lifecycles, reflecting se- new hosts in the open sea. lective pressures common to parasitism. Molecular conver- The phylogenetic position of this enigmatic group gence has also been reported across parasitic lineages, for remained controversial for a long time (Giribet 2008; example, in relation to gene expansions associated with par- Edgecombe et al. 2011). Due to an extremely high rate of asite surface modifications to avoid triggering host immune molecular changes in mesozoans, molecular phylogenetic systems (Wang et al. 2011). In addition, many unique adap- approaches did not always produce reasonable conclu- tations have been observed at the genomic level that enable sions (Katayama et al. 1995; Pawlowski et al. 1996; flatworm parasites to exploit specific niches (Zarowiecki and Petrov et al. 2010; Suzuki et al. 2010). A recent molecular Berriman 2015). Thus, to understand evolution of parasitism, phylogenetic analysis with sequence information for 348 it is necessary to examine genomic innovations that make it nuclear genes showed that dicyemids have close affinities possible. Comparative studies between parasites and closely to orthonectids (fig. 1B)(Lu et al. 2017), although these related nonparasitic species could provide an opportunity to Genome Biol. Evol. 11(8):2232–2243 doi:10.1093/gbe/evz157 Advance Access publication July 26, 2019 2233 Lu et al. GBE test long-standing hypotheses of genome reduction and The Contamination-Removing Assembly Pipeline molecular changes for adaptation to a parasitic lifestyle Eight runs of MiSeq sequencing generated 207 million read (Jackson 2015). pairs of paired-end library (supplementary table S1, As mentioned earlier, dicyemids are microscopic endopar- Supplementary Material online). The quality-trimming process asites inhabiting renal sacs of cephalopods. Although more employed Trimmomatic (v0.33) (Bolger et al. 2014)witha than one dicyemid species can inhabit an individual host quality threshold of 20 and a minimum
Recommended publications
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • CAPÍTULO 7 Phylum Dicyemida Francisco Brusa Y Lisandro Negrete
    CAPÍTULO 7 Phylum Dicyemida Francisco Brusa y Lisandro Negrete "Desde su descubrimiento han constituido un rompecabezas taxonómico". LIBBIE H. HYMAN, THE INVERTEBRATES (1940) El phylum Dicyemida tradicionalmente se asociaba a los ortonéctidos, que parasitan varios grupos de in- vertebrados marinos (“turbelarios”, nemertinos, poliquetos, moluscos gasterópodos y bivalvos, ofiuros y ascidias), y se los incluía en el phylum Mesozoa, por su grado de organización intermedio entre los proto- zoos y metazoos. Actualmente, debido a diferencias en su anatomía y en el ciclo de vida se los reconoce como pertenecientes a dos phyla, Dicyemida y Orthonectida. Los diciémidos son un grupo de pequeños animales vermiformes que parasitan los apéndices renales de moluscos cefalópodos. Presentan especificidad parasitaria y generalmente un individuo hospedador puede albergar más de una especie parásita. Se reconocen 112 especies válidas distribuidas en nueve géneros, cinco de los cuales son monoespecíficos (Catalano, 2012). Los diciémidos están mejor representados en el hemisferio norte, mientras que se conocen pocos registros en el hemisferio sur; este sesgo podría deberse a los escasos estudios en esta región. Son animales muy sencillos con el cuerpo constituido por pocas células (menos de 40), sin tejidos ni órganos. No obstante se ha reportado la presencia de uniones intercelulares entre distintas células en los individuos de los diferentes estadios del ciclo de vida. Se ha observado la pre- sencia de zónula adherens, mácula adherens y uniones gap. Si bien no se han encontrado componentes extracelulares formando una lámina basal o fibras de colágeno, sí se ha reportado la presencia de fibronec- tina y colágeno tipo IV con patrones de distribución similares a los de la lámina basal (Czaker y Janssen, 1998; Czaker, 2000).
    [Show full text]
  • A New Dicyemid from Octopus Hubbsorum (Mollusca: Cephalopoda: Octopoda) Author(S) :Sheila Castellanos-Martinez, M
    A New Dicyemid from Octopus hubbsorum (Mollusca: Cephalopoda: Octopoda) Author(s) :Sheila Castellanos-Martinez, M. Carmen Góómez, F. G. Hochberg, Camino Gestal, and Hidetaka Furuya Source: The Journal of Parasitology, 97(2):265-269. 2011. Published By: American Society of Parasitologists DOI: 10.1645/GE-2577.1 URL: http://www.bioone.org/doi/full/10.1645/GE-2577.1 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. J. Parasitol., 97(2), 2011, pp. 265–269 F American Society of Parasitologists 2011 A NEW DICYEMID FROM OCTOPUS HUBBSORUM (MOLLUSCA: CEPHALOPODA: OCTOPODA) Sheila Castellanos-Martinez, M. Carmen Go´ mez*, F. G. HochbergÀ, Camino Gestal, and Hidetaka Furuya` Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain. e-mail: [email protected] ABSTRACT: A new species of dicyemid mesozoan is described from Octopus hubbsorum Berry, 1953, collected in the south of Bahia de La Paz, Baja California Sur, Me´xico.
    [Show full text]
  • А 2004 А 2004 §* 2004 § ¦ О R П¦ О B П 3 ¦ А ABC § А О ¦ *¦ ¦ П Ali V, Shigeta Y, Tokumoto U, Takahashi Y, No
    ӴǘȓÀǿಓ೿༶൘ 2004 §ǘȓÀǿบƣ۩ƣॣบƤ 2004 వணࣄ੠׽Ћ§*Ƥ 2004 వணஈࢪࡐLJࠤƎ ¦ƌޜ٭ଆ¦ਿ৖Îవ݈ƣ۩Ơ R Ɲഗ֗Ϧଆ࣋Î௙ B Ɲഗ֗Ïƣ 3 ุ݂ƠൌƆƛں ௙ǘȓÀǿఊƜƤଆࡐটƣ ABC ࣁƠౡ་ƌƔ§ Ïܒ੔¦݄׾ܑ܊੔বൊԆǘȓÀǿÎുߑ٩Ѐ¦ݴ౲༸೩*¦ગѼܟ Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T (2004) An intestinal parasitic protist Entamoeba histolytica possesses a pon-redundant NIF-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem 279, 16863-16874. Oku H, Ohyama T, Hiroki A, Yamada K, Fukuyama K, Kawaguchi H, Katakai R (2004) Addition of a peptide fragment on an alpha-helical depsipeptide induces alpha/3(10)-conjugated helix: Synthesis, crystal structure, and CD spectra of Boc-Leu-Leu-Ala-(Leu-Leu-Lac)3-Leu-Leu-Oet. Biopolymers 75, 242-254. Sakamoto H, Higashimoto Y, Hayashi S, Sugishima M, Fukuyama K, Palmer G, Noguchi M (2004) Hydroxylamine and hydrazine bind directly to the heme iron of the heme-heme oxygenase-1 complex. J Inorg Biochem 98, 1223-1228. Sugishima M, Migita CT, Zhang X, Yoshida T, Fukuyama K (2004) Crystal structure of heme oxygenase-1 from Cyanobacterium synechocystis sp. PCC 6803 in complex with heme. Eur J Biochem 271, 4517-4525. Sugishima M, Sakamoto H, Noguchi M, Fukuyama K (2004) CO-Trapping site in heme oxygenase revealed by photolysis of its CO-bound heme complex: mechanism of escaping from product inhibition. J Mol Biol 341, 7-13. Sugishima M, Tanimoto N, Soda K, Hamada N, Tokunaga F, Fukuyama K (2004) Structure of photoactive yellow protein (PYP) E46Q mutant at 1.2 Å resolution suggests how Glu46 controls the spectroscopic and kinetic characteristics of PYP.
    [Show full text]
  • Fascicolo 4 'TURBELLARIA', GNATHOSTOMULIDA
    Fascicolo 4 'TURBELLARIA', GNATHOSTOMULIDA, ORTHONECTIDA, DICYEMIDA, NEMERTEA Giambattista Bello, Alessandra Falleni, Gaston Fredj, Vittorio Gremigni, F.G. Hochberg e Guy Vernet Il presente fascicolo raccoglie l'opera di sei ricercatori a cui spetta la responsabilità delle rispettive sezioni, sia per le liste di specie che per i testi introduttivi e le note: V. GREMIGNI - 'Turbellaria' (generi 001-232) A. FALLENI - Gnathostomulida (generi 233-237) G. BELLO - Orthonectida (genere 238) F.G. HOCHBERG & G. BELLO - Dicyemida (generi 239-243) G. VERNET & G. FREDJ - Nemertea (generi 244-278) 'TURBELLARIA' I Turbellari sono solitamente considerati nei trattati di Zoologia come una classe appartenente al phylum Platelminti. A seguito della crescente affermazione della sistematica filogenetica di Hennig (1966) una completa revisione sia del phylum, sia della classe è stata suggerita da vari autori. In particolare Ehlers (1985), basandosi sull'analisi cladistica di numerosi dati morfologici e ultrastrutturali, ha proposto che dal 'System of the Plathelminthes' venga eliminato addirittura il termine Turbellaria che costituirebbe un gruppo parafiletico anziché un vero taxon monofiletico, e sia evitato l'uso dei termini classe, ordine, sottordine etc. Non tutti gli studiosi che si occupano di 'vermi piatti' concordano con la classificazione di Ehlers (vedi ad esempio Rieger et al., 1991), ma è indubbio che la vecchia separazione dei Turbellari da Trematodi e Cestodi, basata principalmente su dati ecologici, appare ormai superata. Le attuali conoscenze, non solo sulla sistematica, ma anche sulla distribuzione geografica italiana e mondiale e sul numero di generi e specie di Turbellari sono relativamente scarse. Il numero di specie attualmente note nel mondo (peraltro in continua crescita) si avvicina a 4000, ma la cifra reale è stimabile in almeno 5 volte di più.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • OEB51: the Biology and Evolu on of Invertebrate Animals
    OEB51: The Biology and Evoluon of Invertebrate Animals Lectures: BioLabs 2062 Labs: BioLabs 5088 Instructor: Cassandra Extavour BioLabs 4103 (un:l Feb. 11) BioLabs2087 (aer Feb. 11) 617 496 1935 [email protected] Teaching Assistant: Tauana Cunha MCZ Labs 5th Floor [email protected] Basic Info about OEB 51 • Lecture Structure: • Tuesdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes “Tech Talk” • the lecturer will explain some of the key techniques used in the primary literature paper we will be discussing that week • Wednesdays: • By the end of lab (6pm), submit at least one quesBon(s) for discussion of the primary literature paper for that week • Thursdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes Paper discussion • Either the lecturer or teams of 2 students will lead the class in a discussion of the primary literature paper for that week • There Will be a total of 7 Paper discussions led by students • On Thursday January 28, We Will have the list of Papers to be discussed, and teams can sign uP to Present Basic Info about OEB 51 • Bocas del Toro, Panama Field Trip: • Saturday March 12 to Sunday March 20, 2016: • This field triP takes Place during sPring break! • It is mandatory to aend the field triP but… • …OEB51 Will not meet during the Week folloWing the field triP • Saturday March 12: • fly to Panama City, stay there overnight • Sunday March 13: • fly to Bocas del Toro, head out for our first collec:on! • Monday March 14 – Saturday March 19: • breakfast, field collec:ng (lunch on the boat), animal care at sea tables,
    [Show full text]
  • Opinion Paper Online Resources
    Online Resource S1: DNA barcoding initiatives Initiative Old website Started in Ended in Active until Still curated Source Actual website www.nserc-crsng.gc.ca/Business-Entreprise/How- The Canadian Barcode of Life Network www.BOLNET.ca 2005 2016 2016 no Comment/Networks-Reseaux/DNABarcode- CodeABarreADN_eng.asp European Barcode Of Life (EUBOL) www.ecbol.org/ 2008 (?) 2016 2016 no www.bioscaneurope.org Norwegian Barcode Of Life (NorBOL) www.dnabarcoding.no/en/ 2007 2016 2016 no www.norbol.org/en/ Mexican Barcode Of Life (MexBOL) www.mexbol.org 2013 (?) 2016 2016 no Trivedi et al. 2016 www.mexbol.com.mx Japanese Barcode Of Life (JBOLI) www.jboli.org/ 2007 now unknown Human health Barcode Of Life (HealthBOL) not found 2010 (?) unknown unknown Polar life Barcode Of Life (PolarBOL) not found unknown unknown Quarantine and plant pathogens (QBOL, as part of the ECBOL) www.qbol.org/en/qbol.htm 2009 now unknown Formicidae Barcode Of Life www.formicidaebol.org/ 2008 2015 unknown no All Birds Barcoding Initiative (ABBI) www.barcodingbirds.org/ 2005 2015 unknown no Trichoptera Barcode Of Life www.trichopterabol.org/ 2015 unknown no Fish Barcode Of Life (FISH-BOL) www.fishbol.org/ 2004 2015 unknown no Barcoding 500K Lepidoptera Barcode Of Life www.lepbarcoding.org/ 2015 unknown no Initiative (2010- 2015): Mammal Barcode Of Life www.mammaliabol.org/ 2015 unknown no www.ibol.org/phase1 Mosquito Barcoding Initiative not found 2015 unknown unknown /about- us/campaigns/ Marine Barcode Of Life www.marinebarcoding.org/ 2009 (?) 2015 unknown unknown Sponge
    [Show full text]
  • Cephalopod Guidelines
    Reference Resources Caveats from AAALAC’s Council on Accreditation regarding this resource: Guidelines for the Care and Welfare of Cephalopods in Research– A consensus based on an initiative by CephRes, FELASA and the Boyd Group *This reference was adopted by the Council on Accreditation with the following clarification and exceptions: The AAALAC International Council on Accreditation has adopted the “Guidelines for the Care and Welfare of Cephalopods in Research- A consensus based on an initiative by CephRes, FELASA and the Boyd Group” as a Reference Resource with the following two clarifications and one exception: Clarification: The acceptance of these guidelines as a Reference Resource by AAALAC International pertains only to the technical information provided, and not the regulatory stipulations or legal implications (e.g., European Directive 2010/63/EU) presented in this article. AAALAC International considers the information regarding the humane care of cephalopods, including capture, transport, housing, handling, disease detection/ prevention/treatment, survival surgery, husbandry and euthanasia of these sentient and highly intelligent invertebrate marine animals to be appropriate to apply during site visits. Although there are no current regulations or guidelines requiring oversight of the use of invertebrate species in research, teaching or testing in many countries, adhering to the principles of the 3Rs, justifying their use for research, commitment of appropriate resources and institutional oversight (IACUC or equivalent oversight body) is recommended for research activities involving these species. Clarification: Page 13 (4.2, Monitoring water quality) suggests that seawater parameters should be monitored and recorded at least daily, and that recorded information concerning the parameters that are monitored should be stored for at least 5 years.
    [Show full text]
  • OEB51 Lecture 7 Introduc\On to the Protostomes
    OEB51 Lecture 7 Introduc2on to the Protostomes Spiralia & Ecdysozoa Annelida Ctenophora Animals Porifera Placozoa Cnidaria Xenacoelomorpha Parahoxozoa Ambulacraria Echinodermata Hemichordata Planulozoa Deuterostomia Cephalochordata Chordata Urochordata Bilateria Craniata Chaetognatha Bryozoa Entoprocta Cycliophora Nephrozoa Annelida Trochozoa Mollusca Nemertea Brachiopoda Phoronida Spiralia Gastrotricha Protostomia Platyhelminthes Gnathostomulida Micrognathozoa Gnathifera Rotifera Nucleariida Orthonectida Fungi Dicyemida Opisthokonta Filasterea Priapulida Ichthosporea Scalidophora Holozoa Animals Loricifera Choanoflagellata Kinorhyncha Nematoida Nematoda Ecdysozoa Nematomorpha Tardigrada Panarthropoda Onychophora Arthropoda Echinoderm and hemichordate germ layer fate maps Primus (2005) Dev Biol Urochordate and cephalochordate germ layer fate maps A: Urochordate B: Cephalochordate Ctenophora Animals Porifera Placozoa Cnidaria Xenacoelomorpha Parahoxozoa Ambulacraria Echinodermata Hemichordata Planulozoa Deuterostomia Cephalochordata Chordata Urochordata Bilateria Craniata Chaetognatha Bryozoa Entoprocta Protostomes Cycliophora Nephrozoa cons+tute 95% Annelida Trochozoa Mollusca Nemertea of all animal Brachiopoda Phoronida diversity! Spiralia Gastrotricha Protostomia Platyhelminthes Gnathostomulida Micrognathozoa Gnathifera Rotifera Nucleariida Orthonectida Fungi Dicyemida Opisthokonta Filasterea Priapulida Ichthosporea Scalidophora Holozoa Animals Loricifera Choanoflagellata Kinorhyncha Nematoida Nematoda Ecdysozoa Nematomorpha Tardigrada
    [Show full text]