Mass Spectrometry Profiling of Oxylipins, Endocannabinoids, and N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded from GEO
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Oxylipin metabolism is controlled by mitochondrial b-oxidation during bacterial inflammation. Mariya Misheva1, Konstantinos Kotzamanis1*, Luke C Davies1*, Victoria J Tyrrell1, Patricia R S Rodrigues1, Gloria A Benavides2, Christine Hinz1, Robert C Murphy3, Paul Kennedy4, Philip R Taylor1,5, Marcela Rosas1, Simon A Jones1, Sumukh Deshpande1, Robert Andrews1, Magdalena A Czubala1, Mark Gurney1, Maceler Aldrovandi1, Sven W Meckelmann1, Peter Ghazal1, Victor Darley-Usmar2, Daniel White1, and Valerie B O’Donnell1 1Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, UK, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA, 4Cayman Chemical 1180 E Ellsworth Rd, Ann Arbor, MI 48108, United States, 5UK Dementia Research Institute at Cardiff, Cardiff University, UK Address correspondence: Valerie O’Donnell, [email protected] or Daniel White, [email protected], Systems Immunity Research Institute, Cardiff University *Both authors contributed equally to the study 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Edinburgh Research Explorer
Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S. -
Identification of Biomarkers for Sarcoidosis and Tuberculosis of The
DATABASE ANALYSIS e-ISSN 1643-3750 © Med Sci Monit, 2020; 26: e925438 DOI: 10.12659/MSM.925438 Received: 2020.04.26 Accepted: 2020.05.11 Identification of Biomarkers for Sarcoidosis and Available online: 2020.05.28 Published: 2020.07.23 Tuberculosis of the Lung Using Systematic and Integrated Analysis Authors’ Contribution: ABCEF 1 Min Zhao 1 Department of Respiratory and Critical Care Medicine, The Second Hospital of Study Design A BCE 1 Xin Di Jilin University, Changchun, Jilin, P.R. China Data Collection B 2 Department of Oncology and Hematology, The Second Hospital of Jilin University, Statistical Analysis C CDE 2 Xin Jin Changchun, Jilin, P.R. China Data Interpretation D BF 1 Chang Tian Manuscript Preparation E CF 1 Shan Cong Literature Search F Funds Collection G BF 1 Jiangyin Liu ABDEG 1 Ke Wang Corresponding Author: Ke Wang, e-mail: [email protected] Source of support: This study was supported by the Technology Research Funds of Jilin Province (20190303162SF), the Natural Science Foundation of Jilin Province (20180101103JC), and the Medical and Health Project Funds of Jilin Province (20191102012YY) Background: Sarcoidosis (SARC) is a multisystem inflammatory disease of unknown etiology and pulmonary tuberculosis (PTB) is caused by Mycobacterium tuberculosis. Both of these diseases affect lungs and lymph nodes and share similar clinical manifestations. However, the underlying mechanisms for the similarities and differences in ge- netic characteristics of SARC and PTB remain unclear. Material/Methods: Three datasets (GSE16538, GSE20050, and GSE19314) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in SARC and PTB were identified using GEO2R online analyz- er and Venn diagram software. -
The Role of N-3 PUFA-Derived Fatty Acid Derivatives and Their Oxygenated Metabolites in the Modulation of Inflammation
The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation de Bus, I., Witkamp, R., Zuilhof, H., Albada, B., & Balvers, M. This is a "Post-Print" accepted manuscript, which has been Published in "Prostaglandins and Other Lipid Mediators" This version is distributed under a non-commercial no derivatives Creative Commons (CC-BY-NC-ND) user license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and not used for commercial purposes. Further, the restriction applies that if you remix, transform, or build upon the material, you may not distribute the modified material. Please cite this publication as follows: de Bus, I., Witkamp, R., Zuilhof, H., Albada, B., & Balvers, M. (2019). The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation. Prostaglandins and Other Lipid Mediators, 144, [106351]. https://doi.org/10.1016/j.prostaglandins.2019.106351 You can download the published version at: https://doi.org/10.1016/j.prostaglandins.2019.106351 The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation Ian de Bus1,2, Renger Witkamp1, Han Zuilhof2,3,4, Bauke Albada2*, Michiel Balvers1* 1) Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands 2) Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands 3) School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, P.R. China. -
Omega-6 and Omega-3 Oxylipins Are Implicated in Soybean Oil-Induced
www.nature.com/scientificreports OPEN Omega-6 and omega-3 oxylipins are implicated in soybean oil- induced obesity in mice Received: 21 February 2017 Poonamjot Deol1, Johannes Fahrmann2, Jun Yang 3, Jane R. Evans1, Antonia Rizo1, Dmitry Accepted: 14 September 2017 Grapov4, Michelle Salemi2, Kwanjeera Wanichthanarak 5, Oliver Fiehn 5, Brett Phinney2, Published: xx xx xxxx Bruce D. Hammock 3 & Frances M. Sladek1 Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modifed soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global diferences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity–C18 epoxide and diol oxylipins. While humans have been cultivating soybeans for ~5000 years1, soybean oil has become a substantial part of our diet only in the last few decades2. -
Involvement of Microsomal Prostaglandin E Synthase-1-Derived Prostaglandin E2 in Chemical-Induced Carcinogenesis Shuntaro Hara (Showa University, Tokyo, Japan)
Book of Abstracts Thursday, October 23th SESSION 1: PGE2 in PATHOPHYSIOLOGY SESSION 2: PROSTAGLANDINS and CARDIOVASCULAR SYSTEM SESSION 3: NOVEL LIPID MEDIATORS and ADVANCES in LIPID MEDIATOR ANALYTICS Friday, October 24th YOUNG INVESTIGATOR SESSION SESSION 4: LIPOXYGENASES SESSION 5: ADIPOSE TISSUE and BIOACTIVE LIPIDS GOLD SPONSORS http://workshop-lipid.eu MAJOR SPONSORS 1 SPONSORS 2 SCIENTIFIC AND EXECUTIVE COMMITTEE Gerard BANNENBERG Global Organization for EPA and DHA (GOED), Madrid, Spain E-mail: [email protected] Joan CLÀRIA Department of Biochemistry and Molecular Genetics Hospital Clínic/IDIBAPS Villarroel 170 08036 Barcelona, Spain E-mail: [email protected] Per-Johan JAKOBSSON Karolinska Institutet Dept of Medicine 171 76 Stockholm, Sweden E-mail: [email protected] Jane A. MITCHELL NHLI, Imperial College, London SW3 6LY, United Kingdom E-mail: [email protected] Xavier NOREL INSERM U1148, Bichat Hospital 46, rue Henri Huchard 75018 Paris, France E-mail: [email protected] Dieter STEINHILBER Institut fuer Pharmazeutische Chemie Universitaet Frankfurt, Frankfurt, Germany E-mail: [email protected] Gökçe TOPAL Istanbul University Faculty of Pharmacy Department of Pharmacology Beyazit, 34116, Istanbul, Turkey E-mail: [email protected] Sönmez UYDEŞ DOGAN Istanbul University, Faculty of Pharmacy, Department of Pharmacology Beyazit, 34116, Istanbul, Turkey E-mail: [email protected] Tim WARNER The William Harvey Research Institute Barts& the London School of Medicine & Dentistry, United -
N-Acyl Amino Acids (Elmiric Acids): Endogenous Signaling Molecules with Therapeutic Potential
Molecular Pharmacology Fast Forward. Published on November 14, 2017 as DOI: 10.1124/mol.117.110841 This article has not been copyedited and formatted. The final version may differ from this version. MOL #110841 1 MINIREVIEW N-Acyl amino acids (Elmiric Acids): endogenous signaling molecules with therapeutic potential Sumner H. Burstein Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605 Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 30, 2021 Molecular Pharmacology Fast Forward. Published on November 14, 2017 as DOI: 10.1124/mol.117.110841 This article has not been copyedited and formatted. The final version may differ from this version. MOL #110841 2 Running title. N-Acyl amino acids; endogenous signaling molecules Corresponding author: Sumner H. Burstein, Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605 [email protected] Phone: 508-856-2850 FAX: 508-856-2251 Number of of text pages, 26 Number of tables, 3 Downloaded from Number of figures, 4 Number of references, 60 Number of words in the: molpharm.aspetjournals.org Abstract, 220 Introduction, 742 Discussion, 6338 Abbreviations: COX, cyclooxygenase; FAAH, fatty acid amide hydrolase; GABA, γ- at ASPET Journals on September 30, 2021 aminobutyric acid; GPCR, G-protein coupled receptor; LXA4, lipoxin A4 ; LOX, 12,14 lipoxygenases; PGJ,15-deoxy-Δ -prostaglandin-J2 Molecular Pharmacology Fast Forward. Published on November 14, 2017 as DOI: 10.1124/mol.117.110841 This article has not been copyedited and formatted. The final version may differ from this version. MOL #110841 3 Abstract The subject of N-acyl amino acid conjugates has been rapidly growing in recent years, especially with regard to their analgesic and anti-inflammatory actions. -
Modulatory Ośrodkowego Układu Nerwowego
Tom 69 2020 Numer 3 (328) Strony 431–440 Monika Leśkiewicz Zakład Neuroendokrynologii Doświadczalnej Instytut Farmakologii im. Jerzego Maja PAN Smętna 12, 31-343 Kraków E-mail: [email protected] NEUROSTEROIDY – MODULATORY OŚRODKOWEGO UKŁADU NERWOWEGO NEUROAKTYWNE STEROIDY – sję genów jest procesem skomplikowanym, GENOMOWY I NIEGENOMOWY wieloetapowym i długotrwałym, co oznacza, MECHANIZM DZIAŁANIA że pierwsze zmiany ekspresji genów, będą- ce następstwem działania hormonów stero- Przypadkowe odkrycie kilkadziesiąt lat idowych, zaobserwować można co najmniej temu właściwości nasennych i przeciwdr- po kilku godzinach od ekspozycji. Cząstecz- gawkowych progesteronu zapoczątkowało ka steroidowa po wniknięciu do cytoplazmy badania nad wpływem hormonów steroido- przyłącza się do kompleksu receptorowego. wych na aktywność neuronów (SELYE 1942, Receptor w formie nieaktywnej jest połączo- ATKINSON i współaut. 1965). Steroidy: hor- ny z białkami opiekuńczymi Hsp70, Hsp90 mony płciowe, glikokortykosteroidy, minera- i p23 oraz immunofilinami z rodziny białek lokortykosteroidy, łatwo przenikają do ośrod- FK506. Po związaniu steroidowego liganda kowego układu nerwowego (OUN) modulu- następuje oddysocjowanie białek opiekuń- jąc jego pobudliwość. Regulują one funkcje czych, fosforylacja (aktywacja) receptora, OUN głównie na drodze złożonego procesu który, jako homodimer, przemieszcza się do związanego z regulacją transkrypcji genów, jądra. Tam ulega kolejnej dimeryzacji i ra- przy udziale receptorów cytoplazmatycznych/ zem z koregulatorami przyłącza się do od- jądrowych (ang. genomic action). Niektóre powiedniego fragmentu DNA, tzw. elementu hormony steroidowe, np. 17β-estradiol, wią- HRE (ang. hormone-response element). Ko- żą się z receptorami błonowymi związanymi regulatory albo promują transkrypcję (koak- z białkami G (ang. G Protein-coupled estro- tywatory, np. SRC-1; ang. steroid receptor gen receptor, GPER), aktywując wewnątrz- co-activator) albo ją hamują (korepresory, komórkowe szlaki sygnałowe (ang. -
Oxylipin Profiles in Plasma of Patients with Wilson's Disease
H OH metabolites OH Article Oxylipin Profiles in Plasma of Patients with Wilson’s Disease Nadezhda V. Azbukina 1 , Alexander V. Lopachev 2, Dmitry V. Chistyakov 3,* , Sergei V. Goriainov 4, Alina A. Astakhova 3, Vsevolod V. Poleshuk 5, Rogneda B. Kazanskaya 6, Tatiana N. Fedorova 2,* and Marina G. Sergeeva 3,* 1 Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow 119234, Russia; [email protected] 2 Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, Moscow 125367, Russia; [email protected] 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; [email protected] 4 SREC PFUR Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia; [email protected] 5 Research Center of Neurology, Moscow 125367, Russia; [email protected] 6 Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia; [email protected] * Correspondence: [email protected] (D.V.C.); [email protected] (T.N.F.); [email protected] (M.G.S.) Received: 17 April 2020; Accepted: 25 May 2020; Published: 29 May 2020 Abstract: Wilson’s disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics, environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling mediators that are deeply involved in innate immunity responses; the regulation of inflammatory responses, including acute and chronic inflammation; and other disturbances related to any system diseases. -
Linoleic Acid‐Derived Metabolites Constitute the Majority of Oxylipins In
DR. AMEER Y TAHA (Orcid ID : 0000-0003-4611-7450) Article type : Original Article Linoleic acid-derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuron-glia co-cultures in a sex- dependent manner Marie Hennebelle1*, Rhianna K. Morgan2*, Sunjay Sethi2, Zhichao Zhang1, Hao Chen2, Ana Cristina Grodzki2, Pamela J. Lein2, Ameer Y. Taha1+ Article 1Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; 2Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA *These authors contributed equally to this work. +Corresponding author: Dr. Ameer Y. Taha Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, One Shields Avenue, RMI North (3162), Davis, CA, USA 95616 Email: [email protected] Phone: (+1) 530-752-7096 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to Accepted differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jnc.14818 This article is protected by copyright. All rights reserved. Running title: 13-hydroxyoctadecadienoic acid increases axonal growth Keywords: fatty acids, neuronal morphogenesis, OXLAMs, oxylipins Abbreviations: AA, arachidonic acid; CE, cholesteryl ester; -
Ibuprofen Alters Epoxide Hydrolase Activity and Epoxy-Oxylipin Metabolites Associated with Different Metabolic Pathways in Murine Livers
Ibuprofen alters epoxide hydrolase activity and epoxy-oxylipin metabolites associated with different metabolic pathways in murine livers Shuchita Tiwari University of California, Davis Jun Yang University of California, Davis Christophe Morisseau University of California, Davis Blythe Durbin-Johnson University of California, Davis Bruce Hammock University of California, Davis Aldrin Gomes ( [email protected] ) University of California, Davis Research Article Keywords: sex difference, ibuprofen, liver, microsomal epoxide hydrolase, oxylipin, soluble epoxide hydrolase Posted Date: November 30th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-109297/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on March 29th, 2021. See the published version at https://doi.org/10.1038/s41598-021-86284-1. Ibuprofen alters epoxide hydrolase activity and epoxy-oxylipin metabolites associated with different metabolic pathways in murine livers 1 2 2 3 Shuchita Tiwari , Jun Yang , Christophe Morisseau , Blythe Durbin-Johnson , Bruce D. Hammock2 and Aldrin V. Gomes1, 4, * 1Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA. 2Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA. 3Department of Public Health Sciences, University of California, Davis, CA, USA. 4Department of Physiology and Membrane Biology, -
Endocannabinoids and Reproduction
International Journal of Endocrinology Endocannabinoids and Reproduction Guest Editors: Rosaria Meccariello, Natalia Battista, Heather B. Bradshaw, and Haibin Wang Endocannabinoids and Reproduction International Journal of Endocrinology Endocannabinoids and Reproduction Guest Editors: Rosaria Meccariello, Natalia Battista, Heather B. Bradshaw, and Haibin Wang Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “International Journal of Endocrinology.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Anil K. Agarwal, USA K. Hussain, UK Muhammad Shahab, Pakistan Stephen L. Atkin, UK Daniela Jezova, Slovakia Kazuhiro Shiizaki, Japan John Ayuk, UK J. Karalliedde, UK Kevin Sinchak, USA Amelie Bonnefond, France Małgorzata Kotula-Balak, Poland Stacia A. Sower, USA Shern L. Chew, UK Fernand Labrie, Canada Ajai Kumar Srivastav, India F. X. Donadeu, UK Mario Maggi, Italy Stanko S. Stojilkovic, USA Maria L. Dufau, USA Robert D. Murray, UK Robert S. Tan, USA Kristin Eckardt, Germany Maria New, USA Stuart Tobet, USA Dariush Elahi, USA Faustino R. Perez-L´ opez,´ Spain Jack R. Wall, Australia Oreste Gualillo, Spain Ursula Plockinger,¨ Germany Paul M. Yen, USA A. Hoflich,¨ Germany Alexander Schreiber, USA Naveed Younis, United Kingdom Contents Endocannabinoids and Reproduction, Rosaria Meccariello, Natalia Battista, Heather B. Bradshaw, and Haibin Wang Volume 2014, Article ID 378069, 2 pages Updates in Reproduction Coming from the Endocannabinoid System, Rosaria Meccariello, Natalia Battista, Heather B. Bradshaw, and Haibin Wang Volume 2014, Article ID 412354, 16 pages The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers, Thangesweran Ayakannu, Anthony H.