Post-Copulatory Sexual Selection in Two Tropical Orb-Weaving Leucauge Spiders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event. -
Comparative Functional Morphology of Attachment Devices in Arachnida
Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas. -
THE SPIDER GENUS BILLIMA SIMON* by Hgngw W
THE SPIDER GENUS BILLIMA SIMON* By Hgngw W. LEVI NIuseum of Comparative Zoology, Harvard University Simon (I9O8) described the species Billima attrita which he placed in the subfamily Theridiosomatinae. Recently I noticed that Bonnet (959, P. 5o42) placed the genus in the subfamily Argio- pinae. _As I just revised the American species of the subfamily, an examination of the type specimen appeared in order. I would like. to. thank Prof. M. Vachon and M. Hubert ]?or the loan o,f the specimen from the NIusum National d'Histoire Na- turelle, Paris. Billima attrita is a theridiid. It does not belong in t'he family Araneidae ( Argiopidae) or to. the Theridiosomatidae as. it lacks a colulus, has only one tooth on the chelicerae, and the labium is not rebordered. All members of both the Araneidae and Theridiosomatidae ha.ve a large colulus, and usually have numerous teeth on the cheli- cerae and a rebordered labium. Billima attrita belongs to the genus T'heridion (Levi and Levi, I96Z). A description is presented here and the species is illustrated t?or the first time. Theridion Walckenaer Theridion Walekenaer, 1805. Type species designated by Int. Comm. Zool. Nomencl. Opinion 517, 1958: Aranea picta Walckenaer 1802. Theridion is listed in the Official List of Generic Names in Zoology. Billima Simon, 1908. Type species by monotypy B. attrita. .w SYrOM'. Theridion attrita (Simon) Figs. I-4 Billima .attrita Simon, 1908, p. 430. Female lectotype here designated and juv. male paraleetotype from "Stat. 109 Subiaco N." [Perth, West. Australia] in the Museum National d'Histoire Naturelle, Paris, ex- amined.Bonnet, 1955, p. -
On the Spider Genus Rhoicinus (Araneae, Trechaleidae) in a Central Amazonian Inundation Fores T
1994. The Journal of Arachnology 22 :54—59 ON THE SPIDER GENUS RHOICINUS (ARANEAE, TRECHALEIDAE) IN A CENTRAL AMAZONIAN INUNDATION FORES T Hubert Hofer: Staatliches Museum fair Naturkunde, Erbprinzenstr . 13, 7613 3 Karlsruhe, Germany Antonio D. Brescovit: Museu de Ciencias Naturais, Fundacdo Zoobotanica do Rio Grande do Sul, C . P. 1188, 90 .001-970 Porto Alegre, Brazil ABSTRACT. The male of Rhoicinus gaujoni Simon and the new species Rhoicinus lugato are described. They co-occur in a whitewater-inundation forest in central Amazonia, Brazil, but were not found in a nearby, inten- sively studied blackwater-inundation forest . Rhoicinus gaujoni builds complex, irregular sheet webs on the ground with a silk tube as a retreat . This report enlarges the distribution of the genus from western Sout h America to the central Amazon basin . The spider genus Rhoicinus was proposed by uated on Ilha de Marchantaria (3°15'S, 59°58'W) , Simon (1898a), based on the type species R. gau- the first island in the Solimoes-Amazon river , joni, from Ecuador. Exline (1950, 1960) de- approximately 15 km above its confluence wit h scribed five new species in the genus, R. wallsi the Rio Negro . The forest is annually flooded from Ecuador and R. rothi, R. schlingeri, R . an- between February and September to a depth o f dinus, R. weyrauchi, all from Peru . The genus 3—5 m. The region is subject to a rainy season was placed in the Amaurobiidae by Lehtinen (December to May) and a dry season (June to (1967), followed by Platnick (1989) in his cata- November). -
PDF995, Job 12
Bull. Br. arachnol. Soc. (1998) 11 (2), 73-80 73 Possible links between embryology, lack of & Pereira, 1995; Eberhard & Huber, in press a), Cole- innervation, and the evolution of male genitalia in optera (Peschke, 1978; Eberhard, 1993a,b; Krell, 1996; Eberhard & Kariko, 1996), Homoptera (Kunze, 1957), spiders Hemiptera (Bonhag & Wick, 1953; Heming-Battum & Heming, 1986, 1989), and Hymenoptera (Roig-Alsina, William G. Eberhard 1993) (see also Snodgrass, 1935 on insects in general, Smithsonian Tropical Research Institute, and and Tadler, 1993, 1996 on millipedes). Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica It is of course difficult to present quantitative data on these points, and there are obviously exceptions to and these general statements. For example, in spiders although male pholcid genitalia have elaborate internal Bernhard A. Huber locking and bracing devices (partly in relation to the Escuela de Biología, Universidad de Costa Rica, chelicerae), most or all of the genital structures of the Ciudad Universitaria, Costa Rica* female that are contacted by the male genitalia are membranous (Uhl et al., 1995; Huber, 1994a, 1995c; Summary Huber & Eberhard, 1997). Some portions of the female sperm-receiving organs are also soft in the tetragnathids The male genitalia of spiders apparently lack innervation, Nephila and Leucauge (Higgins, 1989; Eberhard & probably because they are derived embryologically from Huber, in press b), as are the female genital structures structures that secrete the tarsal claw, a structure which lacks nerves. The resultant lack of both sensation and fine that guide the male’s embolus in Histopona torpida muscular control in male genitalia may be responsible for (C. -
Description of a Novel Mating Plug Mechanism in Spiders and the Description of the New Species Maeota Setastrobilaris (Araneae, Salticidae)
A peer-reviewed open-access journal ZooKeys 509: 1–12Description (2015) of a novel mating plug mechanism in spiders and the description... 1 doi: 10.3897/zookeys.509.9711 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Description of a novel mating plug mechanism in spiders and the description of the new species Maeota setastrobilaris (Araneae, Salticidae) Uriel Garcilazo-Cruz1, Fernando Alvarez-Padilla1 1 Laboratorio de Aracnología. Facultad de Ciencias, Universidad Nacional Autonoma de Mexico s/n Ciudad Universitaria, México D. F. Del. Coyoacán, Código postal 04510, México Corresponding author: Fernando Alvarez-Padilla ([email protected]) Academic editor: D. Dimitrov | Received 27 March 2015 | Accepted 5 June 2015 | Published 22 June 2015 http://zoobank.org/A9EA00BB-C5F4-4F2A-AC58-5CF879793EA0 Citation: Garcilazo-Cruz U, Alvarez-Padilla F (2015) Description of a novel mating plug mechanism in spiders and the description of the new species Maeota setastrobilaris (Araneae, Salticidae). ZooKeys 509: 1–12. doi: 10.3897/ zookeys.509.9711 Abstract Reproduction in arthropods is an interesting area of research where intrasexual and intersexual mecha- nisms have evolved structures with several functions. The mating plugs usually produced by males are good examples of these structures where the main function is to obstruct the female genitalia against new sperm depositions. In spiders several types of mating plugs have been documented, the most common ones include solidified secretions, parts of the bulb or in some extraordinary cases the mutilation of the entire palpal bulb. Here, we describe the first case of modified setae, which are located on the cymbial dorsal base, used directly as a mating plug for the Order Araneae in the species Maeota setastrobilaris sp. -
Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning. -
Seasonal Abundance and Diversity O F Web-Building Spiders in Relation to Habita T Structure on Barro Colorado Island, Panama
Lubin, Y . D. 1978 . Seasonal abundance and diversity of web-building spiders in relation to habita t structure on Barro Colorado Island, Panama . J. Arachnol. 6 :31-51 . SEASONAL ABUNDANCE AND DIVERSITY O F WEB-BUILDING SPIDERS IN RELATION TO HABITA T STRUCTURE ON BARRO COLORADO ISLAND, PANAMA Yael D . Lubin Smithsonian Tropical Research Institute P. O. Box 2072, Balboa, Canal Zone ABSTRAC T Web-building spiders were censused by a visual censuring method in tropical forest understory o n Barro Colorado Island (BCI), Panama Canal Zone. An overall trend of low numbers of spiders in th e late dry season and early wet season (March to May) was seen on all transects . The majority of th e species on the transects had wet season distribution patterns . Some species which occurred year-round on the forest transects had wet season distributions on a clearing-edge transect . A shortage of flyin g insect prey or dessication may have been responsible for the observed distributions . Species diversity and diversity of web types followed the overall seasonal pattern of spider abun- dance. The diversities of species and of web types were greatest on the forest transect with the highes t diversity of structural supports for spider webs . Web density, however, was greatest on the transect a t the edge of a small clearing . Faunal composition, diversity of web types, and seasonal patterns of distribution of spiders on th e BCI transects differed markedly from similar measures derived from censuses taken in a tropica l montane habitat in New Guinea . The differences were attributed in part to differences in the habitat s and in the evenness of the climate . -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Molecular Phylogenetics and Evolution 69 (2013) 961–979 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A molecular phylogeny of nephilid spiders: Evolutionary history of a model lineage ⇑ Matjazˇ Kuntner a,b,c, , Miquel A. Arnedo d, Peter Trontelj e, Tjaša Lokovšek a, Ingi Agnarsson b,f a Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia b Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA c College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China d Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Spain e Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia f Department of Biology, University of Vermont, Burlington, VT, USA article info abstract Article history: The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism Available online 27 June 2013 among terrestrial animals. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
Courtship, Copulation, and Sperm Transfer in Leucauge Mariana (Araneae, Tetragnathidae) with Implications for Higher Classification
1998. The Journal of Arachnology 26 :342-368 COURTSHIP, COPULATION, AND SPERM TRANSFER IN LEUCAUGE MARIANA (ARANEAE, TETRAGNATHIDAE) WITH IMPLICATIONS FOR HIGHER CLASSIFICATION William G . Eberhard : Smithsonian Tropical Research Institute, and Escuela de Biologia, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica Bernhard A. Huber': Escuela de Biologia, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica ABSTRACT . The courtship behavior of male Leucauge mariana (Keyserling 1881) spiders that occurred both prior to and during copulation is described, along with the positions and movements of the male genitalia . The great variation in male behavior suggests that it does not function in species recognition . Several kinds of female response are necessary if a male is to successfully inseminate her. Males made two types of insertion, involving different movements of palpal sclerites, and copulations with virgin females differed quantitatively and qualitatively from those with non-virgins . Males deposited encapsulated sperm and other material in an outer chamber of the female's spermatheca early in copulation . Later stages of copulation involved deposition of material on the surface of the female's epigynum that sometimes resulted, with the apparent addition of material by the female, in the formation of a plug on the epigynum . Sperm were decapsulated in the female soon after insemination, perhaps as a result of the action of a female glandular product, and later were found in two other chambers of her spermathecae. Contrary to previous discussions, male and female cheliceral clasping behavior accompanying copulation does not explain why the palpal morphology of these spiders is relatively simple. Cheliceral clasping was similar, though not identical, to that of several other tetragnathine spiders . -
Spiders: a Proficient Candidate in Practising IPM for Darjeeling Tea
Available online at www.worldscientificnews.com WSN 38 (2016) 1-62 EISSN 2392-2192 M O N O G R A P H Spiders: A Proficient Candidate in Practising IPM for Darjeeling Tea 2016 World Scientific News 38 (2016) 1-62 Spiders: A Proficient Candidate in Practising IPM for Darjeeling Tea Editors Dinendra Raychaudhuri & Sumana Saha Contributors Dr. Dinendra Raychaudhuria Dr. Sumana Sahab Dr. Tapan Kumar Roy Department of Agricultural Biotechnology, IRDM Faculty Centre, Ramakrishna Mission Vivekananda University, Narendrapur, Kolkata - 700103, India a,bE-mail address: [email protected] , [email protected] ABSTRACT Effect of pesticides in the crop fields is now well known. Tea is no exception to this. Idea behind the present study is to appreciate the biological potential of spiders against tea pests. The study area included 6 tea estates viz. Badamtam T.E., Ging T.E., Salim Hill T.E. (organic), Castleton T.E., Namring T.E., and Thurbo T.E. (conventional). Altogether 85 species under 52 genera distributed over 18 families could be recorded. These can broadly be categorized into 7 trophic groups. The decreasing order of the groups are Orb weavers (48.24%) > Ambushers (22.35%) > Ground dwellers (11.76%) ≥ Stalkers (11.76%) > Foliage hunters (9.41%) > Sheet web weavers (2.35%) > Space web builders (1.18%). Out of the total species encountered 4 species are new from the country, 2 from the state and 36 species from the study area. Based on the species richness, the decreasing order of the tea estates are BTE (61.18%) ˃ NTE (54.12%) ˃ GTE (51.76%) ˃ STE (42.35%) ˃ CTE (28.24%) ˃ TTE (25.88%).