Biodiversity Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Final Report Evaluation of the impact of the CAP on habitats, landscapes, biodiversity Final Report Alliance Environnement November 2019 – ALLIANCE ENVIRONNEMENT – EUROPEAN COMMISSION Directorate-General for Agriculture and Rural Development Directorate C — Strategy, Simplification and Policy Analysis Unit C4 — Monitoring and Evaluation Contact: [email protected] European Commission B-1049 Brussels EUROPEAN COMMISSION Evaluation of the impact of the CAP on habitats, landscapes, biodiversity Final Report Directorate-General for Agriculture and Rural Development 2019 Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). LEGAL NOTICE The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). Luxembourg: Publications Office of the European Union, 2020 ISBN 978-92-76-11321-8 DOI: 10.2762/818843 KF-01-19-756-EN-N © European Union, 2020 Reproduction is authorised provided the source is acknowledged. The United Kingdom withdrew from the European Union as of 1 February 2020. During the transition period, which ends on 31 December 2020, Union law, with a few limited exceptions, continues to be applicable to and in the United Kingdom and any reference to Member States in Union law shall be understood as including the United Kingdom. Evaluation of the impact of the CAP on habitats, landscapes, biodiversity AGRI-2018-0492 Governed by Framework Contract No 30-CE- 0807500/00-67 (AGRI-2016-0296) -Alliance Environnement- European Economic Interest Grouping Final Report November 2019 -Alliance Environnement- European Economic Interest Grouping EEIG ALLIANCE ENVIRONNEMENT is formed by the following companies: Institute for European ORÉADE-BRÈCHE Sarl Environmental Policy (IEEP) 64 Chemin del Prat – Rue Joseph II 36-38 31320 Auzeville, France 1000 Brussels, Belgium Tél. : + 32 (0) 2738 7482 Tél. : + 33 5 61 73 62 62 Fax : + 32 (0) 2732 4004 Fax : + 33 5 61 73 62 90 Mail : [email protected] Mail : [email protected] Represented by: Represented by : Claire FROOMBERG Thierry CLEMENT TABLE OF CONTENTS LIST OF ACRONYMS AND ABBREVIATIONS ...................................................... VIII 1 INTRODUCTION ............................................................................................... 1 1.1 Objectives and scope of the evaluation study ........................................................................ 1 1.2 Geographic coverage and timeframe ........................................................................................ 1 1.3 Definitions of key terms ............................................................................................................... 1 2 DESCRIPTIVE CHAPTER ................................................................................... 2 2.1 The EU biodiversity target and policy framework ................................................................. 2 2.2 The relationship between agriculture, forestry and biodiversity, landscapes and habitats ......................................................................................................................................................... 5 2.3 Biodiversity status and trends in agricultural and forest habitats and species .......... 15 3 DESCRIPTION OF CAP MEASURES AND THEIR INTERVENTION LOGIC ......... 17 4 GENERAL PRINCIPLES AND METHODS FOR THE EVALUATION ...................... 27 4.1 Development of an evaluation framework ............................................................................ 27 4.2 Identifying the counterfactual ................................................................................................. 27 4.3 Methodological tools ................................................................................................................... 27 4.4 Indicators and other statistical data used ............................................................................ 27 4.5 Limitations of the methods proposed ..................................................................................... 27 4.6 Approach for the case studies ................................................................................................... 28 5 CAUSAL ANALYSIS ......................................................................................... 29 5.1 ESQ 1: What is the architecture of CAP implementation in member states in relation to all CAP instruments and measures having effects on biodiversity and landscapes (i.e. choices concerning pillars i and ii)? .................................................................................................... 29 5.2 ESQ 2: What are the drivers and reasons behind the implementation choices regarding the CAP instruments and measures directly or indirectly related to biodiversity? 48 5.3 ESQ 3: What are the impacts of these implementation choices at the level of the beneficiaries (farmers/foresters) in terms of land use patterns, intensity of land use (intensification and land abandonment) and geographical distribution of production? ..... 57 6 EFFECTIVENESS ............................................................................................. 76 6.1 ESQ 4: To what extent have CAP instruments and measures individually and taken together contributed to achieving the objective of sustainable management of natural Final Report Evaluation of the impact of the CAP on habitats, landscapes, biodiversity i resources and climate action with a focus on restoration, preservation and enhancement of biodiversity and landscapes (heterogeneity, features, corridor effects)? .......................... 76 6.2 ESQ 5: To what extent have CAP instruments and measures contributed to maintain and improve the conservation status of species and habitats of the Community interest, landscape diversity and connectivity of natural areas, and to increase, contain or alleviate the identified pressures from agriculture and forestry on biodiversity? ................................. 96 6.3 ESQ 6: To what extent have CAP instruments and measures addressed the impact of biodiversity on agriculture and forestry (e.g. measures supporting coexistence between sheep grazing and wolves, crop cultivation and geese, pollinators and fruit/vegetable production practices)? ......................................................................................................................... 103 6.4 ESQ 7: To what extent are the biodiversity priorities for the implementation of cap instruments and measures by Member States in line with and giving effect to biodiversity strategies at national and regional levels? ..................................................................................... 112 6.5 ESQ 8: Which successful approaches concerning the implementation of the CAP instruments and measures on biodiversity, landscapes, including protected habitats (including those with positive effect on economic viability and wider rural development objectives) can be identified and what are critical factors for the success? ........................ 117 7 EFFICIENCY .................................................................................................. 122 7.1 ESQ 9: Regarding CAP instruments and measures: to what extent have the cap instruments and measures as implemented by the Member States generated the best possible results towards the objective of sustainable management of natural resources and climate action with a focus on restoring, preserving and enhancing biodiversity and the state of landscapes with its available budget? ............................................................................. 122 7.2 ESQ 10: REGARDING ADMINISTRATION AND SIMPLIFICATION: TO WHAT EXTENT ........................ 128 8 COHERENCE ................................................................................................. 132 8.1 ESQ 11: To what extent have the CAP instruments and measures, within the CAP architecture been coherent related to supporting biodiversity? .............................................. 132 8.2 ESQ 12: Are biodiversity-related instruments and measures coherent with the other CAP general objectives (viable food production and balanced territorial development)? 136 8.3 ESQ 13: TO WHAT EXTENT ARE CAP INSTRUMENTS AND MEASURES COHERENT WITH OTHER RELATED EU AND NATIONAL POLICIES RELEVANT FOR BIODIVERSITY (E.G. BIRDS AND HABITATS, NITRATES AND WATER FRAMEWORK DIRECTIVES, SUSTAINABLE USE OF PESTICIDE DIRECTIVE, ESI FUNDS)? IN PARTICULAR, TO WHAT EXTENT HAVE CAP INSTRUMENTS CONTRIBUTED TO THE ACTIONS OF TARGET 3 OF THE EU BIODIVERSITY STRATEGY TO 2020, NAMELY TO ........................................................................... 143 9 RELEVANCE .................................................................................................. 149 9.1 ESQ 14: To what extent do the CAP instruments and measures correspond and allow adaptations to the current needs and/or new or emerging issues in relation to biodiversity and landscapes in
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • IN BOSNIA and HERZEGOVINA June 2008
    RESULTS FROM THE EU BIODIVERSITY STANDARDS SCIENTIFIC COORDINATION GROUP (HD WG) IN BOSNIA AND HERZEGOVINA June 2008 RESULTS FROM THE EU BIODIVERSITY STANDARDS SCIENTIFIC COORDINATION GROUP (HD WG) IN BOSNIA AND HERZEGOVINA 30th June 2008 1 INTRODUCTION ............................................................................................................... 4 2 BACKGROUND INFORMATION ON BIH.................................................................. 5 3 IDENTIFIED SOURCES OF INFORMATION ............................................................. 8 3-a Relevant institutions.......................................................................................................................................8 3-b Experts.............................................................................................................................................................9 3-c Relevant scientific publications ...................................................................................................................10 3-c-i) Birds...........................................................................................................................................................10 3-c-ii) Fish ........................................................................................................................................................12 3-c-iii) Mammals ...............................................................................................................................................12 3-c-iv)
    [Show full text]
  • Monitoring Methodology and Protocols for 20 Habitats, 20 Species and 20 Birds
    1 Finnish Environment Institute SYKE, Finland Monitoring methodology and protocols for 20 habitats, 20 species and 20 birds Twinning Project MK 13 IPA EN 02 17 Strengthening the capacities for effective implementation of the acquis in the field of nature protection Report D 3.1. - 1. 7.11.2019 Funded by the European Union The Ministry of Environment and Physical Planning, Department of Nature, Republic of North Macedonia Metsähallitus (Parks and Wildlife Finland), Finland The State Service for Protected Areas (SSPA), Lithuania 2 This project is funded by the European Union This document has been produced with the financial support of the European Union. Its contents are the sole responsibility of the Twinning Project MK 13 IPA EN 02 17 and and do not necessarily reflect the views of the European Union 3 Table of Contents 1. Introduction .......................................................................................................................................................... 6 Summary 6 Overview 8 Establishment of Natura 2000 network and the process of site selection .............................................................. 9 Preparation of reference lists for the species and habitats ..................................................................................... 9 Needs for data .......................................................................................................................................................... 9 Protocols for the monitoring of birds ....................................................................................................................
    [Show full text]
  • Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
    AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies.
    [Show full text]
  • Ship Rats and Island Reptiles: Patterns of Co-Existence in the Mediterranean
    Ship rats and island reptiles: patterns of co-existence in the Mediterranean Daniel Escoriza GRECO, University of Girona, Girona, Girona, Spain ABSTRACT Background. The western Mediterranean archipelagos have a rich endemic fauna, which includes five species of reptiles. Most of these archipelagos were colonized since early historic times by anthropochoric fauna, such as ship rats (Rattus rattus). Here, I evaluated the influence of ship rats on the occurrence of island reptiles, including non-endemic species. Methodology. I analysed a presence-absence database encompassing 159 islands (Balearic Islands, Provence Islands, Corso-Sardinian Islands, Tuscan Archipelago, and Galite) using Bayesian-regularized logistic regression. Results. The analysis indicated that ship rats do not influence the occurrence of endemic island reptiles, even on small islands. Moreover, Rattus rattus co-occurred positively with two species of non-endemic reptiles, including a nocturnal gecko, a guild considered particularly vulnerable to predation by rats. Overall, the analyses showed a very different pattern than that documented in other regions of the globe, possibly attributable to a long history of coexistence. Subjects Biodiversity, Biogeography, Conservation Biology, Ecology, Zoology Keywords Alien species, Co-occurrences, Extinction, Island endemic, Lizard INTRODUCTION The Mediterranean basin is a hotspot of biodiversity, but it is also one of the regions Submitted 19 November 2019 Accepted 28 February 2020 in which biodiversity is most threatened, specifically by the massive transformation of Published 19 March 2020 landscapes and the spread of alien species (Médail & Quézel, 1999). The loss of biodiversity Corresponding author in the region began in ancient times, shortly after human colonization of the islands (Vigne, Daniel Escoriza, 1992).
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Identification of Areas of Very High Biodiversity Value To
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.202341; this version posted July 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Identification of areas of very high biodiversity value 2 to achieve the EU Biodiversity Strategy for 2030 key 3 commitments. A case study using terrestrial Natura 4 2000 network in Romania 5 6 Iulia V. Miu1, Laurentiu Rozylowicz1, Viorel D. Popescu1,2, Paulina Anastasiu3 7 8 1 Center for Environmental Research, University of Bucharest, Bucharest, Romania 9 2 Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America 10 3 Dimitrie Brândză Botanical Garden, University of Bucharest, Bucharest, Romania 11 12 Corresponding Author: 13 Laurentiu Rozylowicz1 14 1 N. Balcescu, Bucharest, 010041, Romania 15 Email address: [email protected] 16 17 Abstract 18 European Union seeks to increase the protected areas by 2030 to 30% of the EU terrestrial 19 surface, of which at least 10% of areas high biodiversity value should be strictly protected. 20 Designation of Natura 2000 network, the backbone of nature protection in the EU, was mostly an 21 expert-opinion process with little systematic conservation planning. The designation of the 22 Natura 2000 network in Romania followed the same non-systematic approach, resulting in a 23 suboptimal representation of invertebrates and plants. To help identify areas with very high 24 biodiversity without repeating past planning mistakes, we present a reproducible example of 25 spatial prioritization using Romania's current terrestrial Natura 2000 network and coarse-scale 26 terrestrial species occurrence.
    [Show full text]
  • FORECO13632R1 Title
    Elsevier Editorial System(tm) for Forest Ecology and Management Manuscript Draft Manuscript Number: FORECO13632R1 Title: Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands Article Type: FLA Full Length Article Keywords: Carabus olympiae; coppice; conversion to high forest; Fagus sylvatica; insect ecology; retention; ageing islands Corresponding Author: Dr. Matteo Negro, Corresponding Author's Institution: University of Turin First Author: Matteo Negro Order of Authors: Matteo Negro; Giorgio Vacchiano; Roberta Berretti; Dan E. Chamberlain; Claudia Palestrini; Renzo Motta; Antonio Rolando Abstract: European beech forests are of particular importance for biodiversity, although relatively little is known about how beech forest management impacts on invertebrate communities. In this paper we investigated the influence of beech forest management history [i.e. over-mature coppices (OC) and coppices in conversion to high forests (CCHF)], climatic, topographic and microhabitat characteristics on ground beetle diversity (measured as total relative abundance, species richness, Shannon diversity and abundance of the endangered endemic species Carabus olympiae) in northern Italy. The diversity of forest specialist carabids was higher in OC and in forest stands characterized by a higher mean temperature and lower relative humidity. Moreover, we detected a positive response of several diversity variables to coarse wood debris cover or volume, herb cover, and the standard deviation of tree diameter. Currently,
    [Show full text]
  • Diet of Three Sympatric Owls in Steppe Habitats of Eastern Kazakhstan
    256 SHORT COMMUNICATIONS VOL. 37, NO. 3 Comfin en Espafia y Portugal (I Censo Coordinado). (Oypaetusbarbaras) en Catalufia (NE Espafia) e imph- Afio 2000. Monograf/a nø 8. SEO/BirdLife, Madrid, caciones sobre su conservacitn. Do•ana Acta Vertebr Spain. 24:235-243. DONAZAR,J.A. 1993. Los buitres ib•ricos. Biologla y con- PAm½ER,P.G., T.A. WAITE, AND M.D. DECKER. 1995. Kin- servacitn. J.M. Reyero, Madrid, Spain. ship and associationin communally roosting black --, O. CEBALLOS,AND J.L. TELLA. 1996. Communal vultures. Anita. Behar. 49:395-401. roostsof EgyptianVultures (Neophronpercnopterus): dy- RABENOLD, P.P. 1983. The communal roost in Black and namics and implicationsfor the speciesconservation. Turkey Vultures:an Information Center?Pages 303- Pages 189-201 in J. Muntaner and J. Mayol [EDS.], 321 in S.R. Wilbur and J.A. Jackson [EDS.], Vulture Biologia y Conservaci0n de las Rapaces Mediterr•- biology and management. Univ. of California Press, neas. Monografias No. 4 de la SEO, Madrid, Spain. Berkeley, CA U.S.A. ß 1987. Recruitment to food in black vultures: ev- --, c.J. PAI,ACIOS,L. GANOOSO,O. CEBALLOS,M.J. GONZ./•LEZ,AND F. HIRALDO. 2002. Conservation status idence for following from communal roosts.Anita. Be- hay. 35:1775-1785. and limiting factorsin the endangeredpopulation of TELLA,J.L. 1991. Dormideros de alimoches en el Valle EgyptianVulture (Neophronpercnopterus) in the Canary Islands. Bid. Conserv. 107:89-98. Medio del Ebro. ActasI CongresoInternacional sobre Aves Carrofieras: 69-74. AEDENAT-CODA, Madrid, MAROAL•D^,A. 1997. Aparici6n de un dormidero comu- Spain. nal de Alimoche (Neophronpercnopterus) en Catalufia ß 2001.
    [Show full text]
  • Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve
    SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Alberta Species at Risk Report No. 159 SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Doug Macaulay Alberta Species at Risk Report No.159 Project Partners: i ISBN 978-1-4601-3449-8 ISSN 1496-7146 Photo: Doug Macaulay of Pale Yellow Dune Moth ( Copablepharon grandis ) For copies of this report, visit our website at: http://www.aep.gov.ab.ca/fw/speciesatrisk/index.html This publication may be cited as: Macaulay, A. D. 2016. Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve. Alberta Species at Risk Report No.159. Alberta Environment and Parks, Edmonton, AB. 31 pp. ii DISCLAIMER The views and opinions expressed are those of the authors and do not necessarily represent the policies of the Department or the Alberta Government. iii Table of Contents ACKNOWLEDGEMENTS ............................................................................................... vi EXECUTIVE SUMMARY ............................................................................................... vi 1.0 Introduction ................................................................................................................... 1 2.0 STUDY AREA ............................................................................................................. 2 3.0 METHODS ................................................................................................................... 6 4.0 RESULTS ....................................................................................................................
    [Show full text]
  • Guidance Document on the Strict Protection of Animal Species of Community Interest Under the Habitats Directive 92/43/EEC
    Guidance document on the strict protection of animal species of Community interest under the Habitats Directive 92/43/EEC Final version, February 2007 1 TABLE OF CONTENTS FOREWORD 4 I. CONTEXT 6 I.1 Species conservation within a wider legal and political context 6 I.1.1 Political context 6 I.1.2 Legal context 7 I.2 Species conservation within the overall scheme of Directive 92/43/EEC 8 I.2.1 Primary aim of the Directive: the role of Article 2 8 I.2.2 Favourable conservation status 9 I.2.3 Species conservation instruments 11 I.2.3.a) The Annexes 13 I.2.3.b) The protection of animal species listed under both Annexes II and IV in Natura 2000 sites 15 I.2.4 Basic principles of species conservation 17 I.2.4.a) Good knowledge and surveillance of conservation status 17 I.2.4.b) Appropriate and effective character of measures taken 19 II. ARTICLE 12 23 II.1 General legal considerations 23 II.2 Requisite measures for a system of strict protection 26 II.2.1 Measures to establish and effectively implement a system of strict protection 26 II.2.2 Measures to ensure favourable conservation status 27 II.2.3 Measures regarding the situations described in Article 12 28 II.2.4 Provisions of Article 12(1)(a)-(d) in relation to ongoing activities 30 II.3 The specific protection provisions under Article 12 35 II.3.1 Deliberate capture or killing of specimens of Annex IV(a) species 35 II.3.2 Deliberate disturbance of Annex IV(a) species, particularly during periods of breeding, rearing, hibernation and migration 37 II.3.2.a) Disturbance 37 II.3.2.b) Periods
    [Show full text]
  • Carabus Menetriesi Pacholei
    Report under the Article 17 of the Habitats Directive European Environment Period 2007-2012 Agency European Topic Centre on Biological Diversity Carabus menetriesi pacholei Annex II Priority Yes Species group Arthropods Regions Continental Menetries´ Ground beetle is a rare species of Central and Eastern Europe bogs. Its isolated occurrence in Bulgaria was formerly regarded as doubtful, but today it is confirmed. The species is assessed as "Unfavourable Bad" due to the report from Austria and Germany. It is assessed as "Unfavourable Bad" ofr all parameters except Range, "Unfavourable Inaquate" Main threats are linked to quality of water and destruction and drainage of bogs. No changes in overall conservation status between 2001-06 and 2007-12 reports. Page 1 Species: Carabus menetriesi pacholei Report under the Article 17 of the Habitats Directive Assessment of conservation status at the European biogeographical level Conservation status (CS) of parameters Current Trend in % in Previous Reason for Region Future CS CS region CS change Range Population Habitat prospects CON U1 U2 U2 U2 U2 = 100 U2 See the endnote for more informationi Assessment of conservation status at the Member State level Page 2 Species: Carabus menetriesi pacholei Report under the Article 17 of the Habitats Directive Assessment of conservation status at the Member State level The map shows both Conservation Status and distribution using a 10 km x 10 km grid. Conservation status is assessed at biogeographical level. Therefore the representation in each grid cell is
    [Show full text]