An Invitation to Higher Gauge Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crossed Modules and the Homotopy 2-Type of a Free Loop Space
Crossed modules and the homotopy 2-type of a free loop space Ronald Brown∗ November 5, 2018 Bangor University Maths Preprint 10.01 Abstract The question was asked by Niranjan Ramachandran: how to describe the fundamental groupoid of LX, the free loop space of a space X? We show how this depends on the homotopy 2-type of X by assuming X to be the classifying space of a crossed module over a group, and then describe completely a crossed module over a groupoid determining the homotopy 2-type of LX; that is we describe crossed modules representing the 2-type of each component of LX. The method requires detailed information on the monoidal closed structure on the category of crossed complexes.1 1 Introduction It is well known that for a connected CW -complex X with fundamental group G the set of components of the free loop space LX of X is bijective with the set of conjugacy classes of the group G, and that the fundamental groups of LX fit into a family of exact sequences derived arXiv:1003.5617v3 [math.AT] 23 May 2010 from the fibration LX → X obtained by evaluation at the base point. Our aim is to describe the homotopy 2-type of LX, the free loop space on X, when X is a connected CW -complex, in terms of the 2-type of X. Weak homotopy 2-types are described by crossed modules (over groupoids), defined in [BH81b] as follows. A crossed module M is a morphism δ : M → P of groupoids which is the identity on objects such that M is just a disjoint union of groups M(x), x ∈ P0, together with an action of P on ∗School of Computer Science, University of Bangor, LL57 1UT, Wales 1MSClass:18D15,55Q05,55Q52; Keywords: free loop space, crossed module, crossed complex, closed category, classifying space, higher homotopies. -
Some Stuff About the String Gerbe
Some Stuff about the String Gerbe Danny Stevenson Department of Mathematics, University of California, Riverside Riverside, CA 92521, USA email: [email protected] March 14, 2006 1 Introduction Let G be a compact, simple and simply connected Lie group and let π : P → M be a principal G bundle over a smooth manifold M. Let ν denote the universally transgressive generator of H3(G; Z) = Z and let c ∈ H4(BG; Z) = H3(G; Z) be the transgression of ν. By regarding H4(BG; Z) as a lattice in (S2g∗)G we will allow ourselves to confuse c and the basic inner product h , i on g. Recall [23] that h ,√i is the Killing form on g, normalised so that the longest root θ has length 2. In the physics literature, M is said to be string, or admit a string structure, if a certain characteristic class in H3(LM; Z) vanishes (here LM denotes the free loop space of M). This characteristic class is the obstruction to lifting the structure group of the principal LG- bundle LP → LM to LGc — the Kac-Moody group. As has been observed by several authors [12, 13, 19] the obstruction in H3(LM; Z) is closely related to the characteristic class c ∈ H4(M; Z): if M is 2-connected a lift of the structure group to LGc exists precisely when the map c: M → K(Z, 4) is null- homotopic. As is well known, if G = Spin(n) then 2c = p1. This obstruction problem on LM can be phrased in the language of homotopy theory down on M. -
A Construction of String 2-Group Modelsusing a Transgression
A Construction of String 2-Group Models using a Transgression-Regression Technique Konrad Waldorf Fakult¨at f¨ur Mathematik Universit¨at Regensburg Universit¨atsstraße 31 D–93053 Regensburg [email protected] Dedicated to Steven Rosenberg on the occasion of his 60th birthday Abstract In this note we present a new construction of the string group that ends optionally in two different contexts: strict diffeological 2-groups or finite-dimensional Lie 2-groups. It is canonical in the sense that no choices are involved; all the data is written down and can be looked up (at least somewhere). The basis of our construction is the basic gerbe of Gaw¸edzki-Reis and Meinrenken. The main new insight is that under a transgression- regression procedure, the basic gerbe picks up a multiplicative structure coming from the Mickelsson product over the loop group. The conclusion of the construction is a relation between multiplicative gerbes and 2-group extensions for which we use recent work of Schommer-Pries. MSC 2010: Primary 22E67; secondary 53C08, 81T30, 58H05 arXiv:1201.5052v2 [math.DG] 4 May 2012 1 Introduction The string group String(n) is a topological group defined up to homotopy equivalence as the 3-connected cover of Spin(n), for n =3 or n> 4. Concrete models for String(n) have been provided by Stolz [Sto96] and Stolz-Teichner [ST04]. In order to understand, e.g. the differential geometry of String(n), the so-called “string geometry”, it is necessary to have models in better categories than topological groups. Its 3-connectedness implies that String(n) is a K(Z, 2)-fibration over Spin(n), so that it cannot be a (finite-dimensional) Lie group. -
A Comonadic Interpretation of Baues–Ellis Homology of Crossed Modules
A COMONADIC INTERPRETATION OF BAUES–ELLIS HOMOLOGY OF CROSSED MODULES GURAM DONADZE AND TIM VAN DER LINDEN Abstract. We introduce and study a homology theory of crossed modules with coefficients in an abelian crossed module. We discuss the basic properties of these new homology groups and give some applications. We then restrict our attention to the case of integral coefficients. In this case we regain the homology of crossed modules originally defined by Baues and further developed by Ellis. We show that it is an instance of Barr–Beck comonadic homology, so that we may use a result of Everaert and Gran to obtain Hopf formulae in all dimensions. 1. Introduction The concept of a crossed module originates in the work of Whitehead [36]. It was introduced as an algebraic model for path-connected CW spaces whose homotopy groups are trivial in dimensions strictly above 2. The role of crossed modules and their importance in algebraic topology and homological algebra are nicely demon- strated in the articles [6, 8, 9, 28, 31, 36], just to mention a few. The study of crossed modules as algebraic objects in their own right has been the subject of many invest- igations, amongst which the Ph.D. thesis of Norrie [33] is prominent. She showed that some group-theoretical concepts and results have suitable counterparts in the category of crossed modules. In [2], Baues defined a (co)homology theory of crossed modules via classifying spaces, which was studied using algebraic methods by Ellis in [15] and Datuashvili– Pirashvili in [13]. A different approach to (co)homology of crossed modules is due to Carrasco, Cegarra and R.-Grandjeán. -
Crossed Modules, Double Group-Groupoids and Crossed Squares
Filomat 34:6 (2020), 1755–1769 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL2006755T University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat Crossed Modules, Double Group-Groupoids and Crossed Squares Sedat Temela, Tunc¸ar S¸ahanb, Osman Mucukc aDepartment of Mathematics, Recep Tayyip Erdogan University, Rize, Turkey bDepartment of Mathematics, Aksaray University, Aksaray, Turkey cDepartment of Mathematics, Erciyes University, Kayseri, Turkey Abstract. The purpose of this paper is to obtain the notion of crossed module over group-groupoids con- sidering split extensions and prove a categorical equivalence between these types of crossed modules and double group-groupoids. This equivalence enables us to produce various examples of double groupoids. We also prove that crossed modules over group-groupoids are equivalent to crossed squares. 1. Introduction In this paper we are interested in crossed modules of group-groupoids associated with the split exten- sions and producing new examples of double groupoids in which the sets of squares, edges and points are group-groupoids. The idea of crossed module over groups was initially introduced by Whitehead in [29, 30] during the investigation of the properties of second relative homotopy groups for topological spaces. The categori- cal equivalence between crossed modules over groups and group-groupoids which are widely called in literature 2-groups [3], -groupoids or group objects in the category of groupoids [9], was proved by Brown and Spencer in [9, TheoremG 1]. Following this equivalence normal and quotient objects in these two cate- gories have been recently compared and associated objects in the category of group-groupoids have been characterized in [22]. -
Higher Categorical Groups and the Classification of Topological Defects and Textures
YITP-SB-18-29 Higher categorical groups and the classification of topological defects and textures J. P. Anga;b;∗ and Abhishodh Prakasha;b;c;y aDepartment of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA bC. N. Yang Institute for Theoretical Physics, Stony Brook, NY 11794-3840, USA cInternational Centre for Theoretical Sciences (ICTS-TIFR), Tata Institute of Fundamental Research, Shivakote, Hesaraghatta, Bangalore 560089, India Abstract Sigma models effectively describe ordered phases of systems with spontaneously broken sym- metries. At low energies, field configurations fall into solitonic sectors, which are homotopically distinct classes of maps. Depending on context, these solitons are known as textures or defect sectors. In this paper, we address the problem of enumerating and describing the solitonic sectors of sigma models. We approach this problem via an algebraic topological method { com- binatorial homotopy, in which one models both spacetime and the target space with algebraic arXiv:1810.12965v1 [math-ph] 30 Oct 2018 objects which are higher categorical generalizations of fundamental groups, and then counts the homomorphisms between them. We give a self-contained discussion with plenty of examples and a discussion on how our work fits in with the existing literature on higher groups in physics. ∗[email protected] (corresponding author) [email protected] 1 Higher groups, defects and textures 1 Introduction Methods of algebraic topology have now been successfully used in physics for over half a cen- tury. One of the earliest uses of homotopy theory in physics was by Skyrme [1], who attempted to model the nucleon using solitons, or topologically stable field configurations, which are now called skyrmions. -
On the String 2-Group
On the String 2-Group Urs Schreiber∗ May 3, 2006 Oberseminar Topologie Universit¨atBonn, May 2, 2006 Abstract We try to convey the main idea for 1. • what the String-group StringG is • and how it is the nerve of a 2-group StrG; 2. as well as • what a StrG-2-bundle is • and how it is “the same” as a StringG-bundle. The first point is due to [10, 9], which will be reviewed in section 2. The second point has been addressed in [8] using the language of bundle gerbes. In section 3 we review this, using a 2-functorial language which is natural with respect to the 2-group nature of StrG. A commented bibliography is given in section 1. Contents 1 Motivation 2 2 The String 2-Group 3 2.1 2-Groups . 4 2.2 StringG ................................ 6 3 String 2-Bundles 9 3.1 2-Bundles . 9 3.2 Transition Bundles . 15 4 Outlook: String Connections 19 ∗e-mail: urs.schreiber at math.uni-hamburg.de 1 1 Motivation The main motivation for the following discussion has its origin in theoretical physics. Elementary particles with spin are described by sections of spin bundles. From the physical point of view, the necessity of a spin structure on spacetime may be deduced from a certain global anomaly for the path integral of a single, point-like, fermion. The path integral (albeit a somewhat heuristic device) can be regarded as a single valued function on the space of configurations of the particle, only if the (first and) second Stiefel-Whitney class of spacetime vanishes. -
ON CATEGORICAL CROSSED MODULES Introduction
Theory and Applications of Categories, Vol. 16, No. 22, 2006, pp. 585–618. ON CATEGORICAL CROSSED MODULES P. CARRASCO, A.R. GARZON´ AND E.M. VITALE Abstract. The well-known notion of crossed module of groups is raised in this paper to the categorical level supported by the theory of categorical groups. We construct the cokernel of a categorical crossed module and we establish the universal property of this categorical group. We also prove a suitable 2-dimensional version of the kernel- cokernel lemma for a diagram of categorical crossed modules. We then study derivations with coefficients in categorical crossed modules and show the existence of a categorical crossed module given by inner derivations. This allows us to define the low-dimensional cohomology categorical groups and, finally, these invariants are connected by a six-term 2-exact sequence obtained by using the kernel-cokernel lemma. Introduction Crossed modules of groups were introduced by J.H.C. Whitehead [42]; they have been shown to be relevant both in topological and algebraic contexts. They provided algebraic models for connected 2-types [28, 30] and allowed to develop, as adequate coefficients, a non-abelian cohomology of groups [13, 27]. It is convenient and sensible to regard crossed modules of groups as 2-dimensional versions of groups (c.f. [33]). They correspond, in fact, to strict categorical groups, that is, strict monoidal groupoids where each object is invertible up to isomorphism. Categorical groups have been studied in the last twenty- five years by several authors from different points of view (algebraic models for homotopy types [4, 6], cohomology [8, 39], extensions [1, 2, 34], derivations [19, 20], ring theory [16, 40]). -
String Structures Associated to Indefinite Lie Groups
String structures associated to indefinite Lie groups Hisham Sati1 and Hyung-bo Shim2 1Division of Science and Mathematics, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE 2Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA April 2, 2019 Abstract String structures have played an important role in algebraic topology, via elliptic genera and elliptic cohomology, in differential geometry, via the study of higher geometric structures, and in physics, via partition functions. We extend the description of String structures from connected covers of the definite-signature orthogonal group O(n) to the indefinite-signature orthogonal group O(p, q), i.e. from the Riemannian to the pseudo-Riemannian setting. This requires that we work at the unstable level, which makes the discussion more subtle than the stable case. Similar, but much simpler, constructions hold for other noncompact Lie groups such as the unitary group U(p, q) and the symplectic group Sp(p, q). This extension provides a starting point for an abundance of constructions in (higher) geometry and applications in physics. Contents 1 Introduction 2 2 The Postnikov tower, Whitehead tower, and variants 4 2.1 ThePostnikovtower ............................... ..... 4 2.2 TheWhiteheadtower ............................... .... 5 2.3 Avariantview .................................... ... 7 2.4 Computationalaspects. ....... 8 2.5 Special case: higher connected covers of classifying spaces and obstructions . 10 3 Applications 13 arXiv:1504.02088v2 [math-ph] 31 Mar 2019 3.1 Special orthogonal groups SO(n) and SO(p,q)...................... 13 3.2 IndefiniteSpingroups ............................. ...... 14 3.3 IndefiniteStringgroups . ....... 17 3.4 String structure associated to indefinite unitary and symplectic groups . 21 3.5 Relation to twisted structures . -
Higher Gauge Theory – I
Higher Gauge Theory { I John C. Baez joint work with: Toby Bartels, Alissa Crans, James Dolan, Aaron Lauda, Urs Schreiber, Danny Stevenson. Barrett Lectures Saturday April 29th, 2006 1 G 3+ f1 D f2 Notes and references at: http://math.ucr.edu/home/baez/barrett/ 1 The Big Idea Using n-categories, instead of starting with a set of things: ¢ ¡¢ ¡ ¦ ¥¦ ¥ ¤ £¤ £ we can now start with a category of things and processes: ¨ §¨ § © © or a 2-category of things, processes, and processes be- tween processes: ... and so on. 2 I'll illustrate this with examples from higher gauge the- ory. This describes not only how particles transform as they move along paths in spacetime: but also how strings transform as they trace out surfaces: ... and so on. Where ordinary gauge theory uses groups, which are special categories: higher gauge theory uses 2-groups: which are special 2-categories. Where ordinary gauge theory uses bundles, higher gauge theory uses 2-bundles. Everything gets ‘categorified’! But first let's back up a bit.... 3 The Fundamental Groupoid Defining the fundamental group of a space X requires us to pick a basepoint ∗ 2 X. This is a bit ad hoc, and no good when X has several components. Sometimes it's better to use the fundamental groupoid of X. This is the category Π1(X) where: • objects are points of X: •x • morphisms are homotopy classes of paths in X: γ x • ( • y We compose homotopy classes of paths in the obvious way. Composition is associative, and every point has an identity path 1x : x ! x. -
Derived Crossed Modules and Obtain an Infinite Series of Isomorphic Crossed Modules
Derived crossed modules Tunçar ¸SAHAN∗ Department of Mathematics, Aksaray University, Aksaray, Turkey Abstract In this study,we interpret the notion of homotopy of morphisms in the category of crossed modules in a category C of groups with operations using the categorical equivalence between crossed modules and internal categories in C. Further, we characterize the derivations of crossed modules in a category C of groups with operations and obtain new crossed modules using regular derivations of old one. Key Words: Homotopy, crossed module, internal category, group with operations Classification: 55U35, 18D35, 20L05, 18A23 1 Introduction Crossed modules first appear in Whitehead’s work on the second homotopy groups [20, 22]. During these studies, he observed that the boundary map from the relative second homotopy group to the first homotopy group provided some conditions. He called the algebraic con- struction that satisfies these conditions a crossed module. Briefly, a crossed module consist of a group homomorphism α : A → B and an (left) action of B on A (denoted by b · a for all a ∈ A and b ∈ B) which satisfies (i) α (b · a) = b + α (a) − b and (ii) α (a) · a1 = a + a1 − a for all a, a1 ∈ A and b ∈ B. Crossed modules are algebraic models for (connected) homotopy 2-types while groups are algebraic models for homotopy 1-types. Crossed modules have been widely used in various ar- arXiv:1808.05012v1 [math.CT] 15 Aug 2018 eas of mathematics such as homotopy theory [3], representation theory [4], algebraic K-theory [10], and homological algebra [9, 11]. Brown and Spencer proved that the category of crossed modules over groups and the cate- gory of group-groupoids (internal categories with in the category of groups) are equivalent [5]. -
Change of Base for Commutative Algebras
CHANGE OF BASE FOR COMMUTATIVE ALGEBRAS U. Ege Arslan and O.¨ G¨urmen November 20, 2018 Abstract ∗ In this paper we examine on a pair of adjoint functors (φ , φ∗) for a subcategory of the category of crossed modules over commutative algebras where φ∗ : XMod/Q → XMod/P , pullback, which enables us to move from crossed Q-modules to crossed P - modules by an algebra morphism φ : P → Q and φ∗ : XMod/P → XMod/Q, induced. ∗ We note that this adjoint functor pair (φ , φ∗) makes p : XMod → k-Alg into a bi- fibred category over k-Alg, the category of commutative algebras, where p is given by p(C, R, ∂)= R. Also, some examples and results on induced crossed modules are given. A. M. S. Classification: 18A40,18A30. Keywords: Induced modules, induced crossed modules, base change functors. Introduction Let S be a ring. Then there is a category Mod/S of modules over S. If φ : S → R is a ring homomorphism, then there is a functor φ∗ from Mod/R to Mod/S where S acts on ∗ an R-module via φ. This functor has a left adjoint φ∗ to φ giving the well known induced module via tensor product. This construction is known as a “change of base” in a general module theory setting. Brown and Higgins [4] generalised that to higher dimension for the group theoretical case, that is, a morphism φ : P → Q of groups determines a pullback functor φ∗ : XMod/Q → XMod/P, where XMod/Q denotes a subcategory of the category of crossed modules XMod and has as objects those crossed modules with a fixed group Q as arXiv:0910.2152v2 [math.CT] 11 Nov 2011 the “base”.