Smith ScholarWorks Mathematics and Statistics: Faculty Publications Mathematics and Statistics 12-1-2011 From Double Lie Groupoids to Local Lie 2-Groupoids Rajan Amit Mehta Pennsylvania State University,
[email protected] Xiang Tang Washington University in St. Louis Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs Part of the Mathematics Commons Recommended Citation Mehta, Rajan Amit and Tang, Xiang, "From Double Lie Groupoids to Local Lie 2-Groupoids" (2011). Mathematics and Statistics: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/mth_facpubs/91 This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact
[email protected] FROM DOUBLE LIE GROUPOIDS TO LOCAL LIE 2-GROUPOIDS RAJAN AMIT MEHTA AND XIANG TANG Abstract. We apply the bar construction to the nerve of a double Lie groupoid to obtain a local Lie 2-groupoid. As an application, we recover Haefliger’s fun- damental groupoid from the fundamental double groupoid of a Lie groupoid. In the case of a symplectic double groupoid, we study the induced closed 2-form on the associated local Lie 2-groupoid, which leads us to propose a definition of a symplectic 2-groupoid. 1. Introduction In homological algebra, given a bisimplicial object A•,• in an abelian cate- gory, one naturally associates two chain complexes. One is the diagonal complex diag(A) := {Ap,p}, and the other is the total complex Tot(A) := { p+q=• Ap,q}. The (generalized) Eilenberg-Zilber theorem [DP61] (see, e.g. [Wei95, TheoremP 8.5.1]) states that diag(A) is quasi-isomorphic to Tot(A).