Rice-Feeding Insects and Selected Natural Enemies in West Africa: Biology, Ecology, Identification

Total Page:16

File Type:pdf, Size:1020Kb

Rice-Feeding Insects and Selected Natural Enemies in West Africa: Biology, Ecology, Identification University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Entomology Papers from Other Sources Entomology Collections, Miscellaneous 2004 Rice-feeding insects and selected natural enemies in West Africa: Biology, ecology, identification E. A. Heinrichs Alberto T. Barrion Follow this and additional works at: https://digitalcommons.unl.edu/entomologyother Part of the Agriculture Commons, and the Entomology Commons This Article is brought to you for free and open access by the Entomology Collections, Miscellaneous at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Entomology Papers from Other Sources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Rice-Feeding Insects and Selected Natural Enemies in West Africa Biology, ecology, identification E.A. Heinrichs and Alberto T. Barrion Illustrated by Cris dela Cruz and Jessamyn R. Adorada Edited by G.P. Hettel 2004 i The International Rice Research Institute (IRRI) and the Africa Rice Center (WARDA, the acronym for West Africa Rice Development Association) are two of fifteen Future Harvest research centers funded by the Consultative Group on International Agricultural Research (CGIAR). The CGIAR is cosponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Bank for Reconstruction and Development (World Bank), the United Nations Development Programme, and the United Nations Environment Programme. Its membership comprises donor countries, international and regional organizations, and private foundations. IRRI, the world’s leading international rice research and training center, was established in 1960. Located in Los Baños, Laguna, Philippines, with offices in 11 other Asian countries, IRRI focuses on improving the well-being of present and future generations of rice farmers and consumers in developing countries, particularly those with low incomes. It is dedicated to helping farmers produce more food on limited land using less water, less labor, and fewer chemical inputs, without harming the environment. WARDA, established in 1971, with headquarters in Côte d’Ivoire and three regional research stations, is an autonomous intergovernment research association of African member states. Its mission is to contribute to food security and poverty alleviation in sub-Saharan Africa (SSA), through research, partnerships, capacity strengthening, and policy support on rice-based systems, and in ways that promote sustainable agricultural developement based on environmentally sound management of natural resources. WARDA hosts the African Rice Initiative (ARI), the Regional Rice Research and Development Network for West and Central Africa (ROCARIZ), and the Inland Valley Consortium (IVC). Responsibility for this publication rests entirely with IRRI and WARDA. The designations employed in the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of IRRI and WARDA concerning the legal status of any country, territory, city, or area, or of its authorities, or the delimitation of its frontiers or boundaries. Copyright International Rice Research Institute and Africa Rice Center 2004 IRRI–The International Rice Research Institute Mailing address: DAPO Box 7777, Metro Manila, Philippines Phone: +63 (2) 580-5600, 845-0563, 844-3351 to 53 Fax: +63 (2) 580-5699, 891-1292, 845-0606 Email: [email protected] Web site: www.irri.org Courier address: Suite 1009, Condominium Center 6776 Ayala Avenue, Makati City, Philippines Phone: +63 (2) 891-1236, 891-1174 WARDA–The Africa Rice Center Mailing address: 01 B.P. 4029, Abidjan 01, Côte d’Ivoire Phone: +225 22 41 06 06 Fax: +225 22 41 18 07 Email: [email protected] Web site: www.warda.org Suggested citation: Heinrichs EA, Barrion AT. 2004. Rice-feeding insects and selected natural enemies in West Africa: biology, ecology, identification. Los Baños (Philippines): International Rice Research Institute and Abidjan (Côte d’Ivoire): WARDA–The Africa Rice Center. 243 p. Cover design: Juan Lazaro IV Page makeup and composition: George R. Reyes Figures 1–82: Emmanuel Panisales Copy editing and index: Tess Rola ISBN 971-22-0190-2 ii Contents FOREWORD v ACKNOWLEDGMENTS vi INTRODUCTION 1 RICE IN A FRICA 1 RICE-FEEDING INSECTS 5 CLIMATIC ZONES AND RICE ECOSYSTEMS AS HABITATS 5 CONSTRAINTS TO RICE PRODUCTION 6 SPECIES IN W EST A FRICA 8 DIRECT DAMAGE 8 ROLE IN DISEASE TRANSMISSION 16 BIOLOGY AND ECOLOGY OF RICE-FEEDING INSECTS 19 ROOT FEEDERS 20 Mole crickets, Gryllotalpa africana Palisot de Beauvois; Orthoptera: 20 Gryllotalpidae Root aphids, Tetraneura nigriabdominalis (Sasaki); Hemiptera 21 (suborder Homoptera): Aphididae Termites, Macrotermes, Microtermes, and Trinervitermes spp.; 22 Isoptera: Termitidae Black beetles, Heteronychus mosambicus Peringuey (= H. oryzae Britton); 24 Coleoptera: Scarabaeidae: Dynastinae Rice water weevils, Afroryzophilus djibai Lyal; Coleoptera: Curculionidae 25 STEM BORERS 25 Stalk-eyed fly, Diopsis longicornis Macquart; Diptera: Diopsidae 27 Stalk-eyed fly, Diopsis apicalis Dalman; Diptera: Diopsidae 32 Stem borer, Pachylophus beckeri Curran; Diptera: Chloropidae 34 African striped rice borer, Chilo zacconius Bleszynski; 34 Lepidoptera: Pyralidae African white borer, Maliarpha separatella Ragonot; 39 Lepidoptera: Pyralidae Scirpophaga spp.; Lepidoptera: Pyralidae 43 African pink borers, Sesamia calamistis Hampson and S. nonagrioides 45 botanephaga Tams and Bowden; Lepidoptera: Noctuidae AFRICAN RICE GALL MIDGE 47 Orseolia oryzivora Harris and Gagne; Diptera: Cecidomyiidae LEAFHOPPERS AND PLANTHOPPERS 52 Green leafhoppers, Nephotettix afer Ghauri and Nephotettix 53 modulatus Melichar; Hemiptera: Cicadellidae White rice leafhoppers, Cofana spectra (Distant) and 54 C. unimaculata (Signoret); Hemiptera: Cicadellidae White-winged planthopper, Nisia nervosa (Motschulsky); 57 Hemiptera: Meenoplidae Brown planthopper, Nilaparvata maeander Fennah; Hemiptera: 57 Delphacidae iii Rice delphacid, Tagosodes cubanus (Crawford); Hemiptera: 58 Delphacidae Spittlebugs, Locris maculata maculata Fabricius and L. rubra 59 Fabricius; Hemiptera: Cercopidae FOLIAGE FEEDERS 61 Rice caseworm, Nymphula depunctalis (Guenée); Lepidoptera: 61 Pyralidae Rice leaffolders, Marasmia trapezalis (Guenée); Lepidoptera: 63 Pyralidae Green-horned caterpillar, Melanitis leda ismene Cramer; 64 Lepidoptera: Satyridae African rice hispids; Coleoptera: Chrysomelidae 64 Flea beetles, Chaetocnema spp.; Coleoptera: 66 Chrysomelidae Ladybird beetle, Chnootriba similis (Mulsant); Coleoptera: 68 Coccinellidae Leaf miner, Cerodontha orbitona (Spencer); Diptera: Agromyzidae 69 Rice whorl maggot, Hydrellia prosternalis Deeming; Diptera: Ephydridae 70 Rice grasshoppers 71 Short-horned grasshoppers, Hieroglyphus daganensis; Orthoptera: Acrididae 71 Short-horned grasshoppers, Oxya spp.; Orthoptera: Acrididae 71 Meadow grasshoppers, Conocephalus spp.; Orthoptera: 72 Tettigoniidae Variegated grasshopper, Zonocerus variegatus (L.); Orthoptera: 74 Pyrgomorphidae Whitefly, Aleurocybotus indicus David and Subramaniam; 76 Hemiptera: Aleyrodidae Spider mites, Oligonychus pratensis Banks, O. senegalensis Gutierrez 77 and Etienne, Tetranychus neocaledonicus Andre; Acari: Tetranychidae INSECTS THAT ATTACK PANICLES 78 Earwigs, Diaperasticus erythrocephalus (Olivier); Dermaptera: Forficulidae 78 Blister beetles; Coleoptera: Meloidae 79 Panicle thrips, Haplothrips spp.; Thysanoptera: Phlaeothripidae 80 Stink bugs, Aspavia spp.; Hemiptera: Pentatomidae 80 Green stink bugs, Nezara viridula (L.); Hemiptera: Pentatomidae 82 Alydid bugs, Stenocoris spp., Mirperus spp. 82 and Riptortus; Hemiptera: Alydidae Cotton stainers, Dysdercus spp.; Hemiptera: Pyrrhocoridae 84 NATURAL ENEMIES OF WEST AFRICAN RICE-FEEDING INSECTS 85 INVENTORY OF NATURAL ENEMIES OF W EST AFRICAN RICE-FEEDING INSECTS 86 Predators 86 Parasitoids 94 AN ILLUSTRATED KEY TO THE IDENTIFICATION OF SELECTED 99 WEST AFRICAN RICE INSECTS AND SPIDERS SECTION I: ORDERS BASED ON ADULTS 100 SECTION II: INSECTS 101 SECTION III: SPIDERS 192 REFERENCES 223 SUBJECT INDEX FOR THE BIOLOGY AND ECOLOGY AND NATURAL ENEMIES SECTIONS 239 iv Foreword Rice, the daily food of nearly half the world’s pest pressure. To develop effective pest management population, is the foundation of national stability and strategies, it is essential to properly identify and to economic growth in many developing countries. It is understand the biology and ecology of insect pests and the source of one quarter of global food energy and— the arthropods that help regulate their populations. for the world’s poor—the largest food source. It is also This book provides the first comprehensive the single largest use of land for producing food and taxonomic keys of the West African rice-feeding insect the biggest employer and income generator for rural species and their natural enemies. It describes their people in the developing world. Rice production has presence and abundance in the different climatic zones been described as the single most important economic (humid tropical zone, the Guinea savanna, and the activity on Earth. Because rice occupies approximately Sudanian savanna) and rice ecosystems (upland, rainfed 9% of the planet’s arable land, it is also a key area of lowland [inland swamps], irrigated lowland, deepwater/ concern—and of opportunity—in environmental floating, and mangrove swamps) in West Africa. For protection. each species, the authors provide available information Rice cultivation is the
Recommended publications
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • Spider Bites
    Infectious Disease Epidemiology Section Office of Public Health, Louisiana Dept of Health & Hospitals 800-256-2748 (24 hr number) www.infectiousdisease.dhh.louisiana.gov SPIDER BITES Revised 6/13/2007 Epidemiology There are over 3,000 species of spiders native to the United States. Due to fragility or inadequate length of fangs, only a limited number of species are capable of inflicting noticeable wounds on human beings, although several small species of spiders are able to bite humans, but with little or no demonstrable effect. The final determination of etiology of 80% of suspected spider bites in the U.S. is, in fact, an alternate diagnosis. Therefore the perceived risk of spider bites far exceeds actual risk. Tick bites, chemical burns, lesions from poison ivy or oak, cutaneous anthrax, diabetic ulcer, erythema migrans from Lyme disease, erythema from Rocky Mountain Spotted Fever, sporotrichosis, Staphylococcus infections, Stephens Johnson syndrome, syphilitic chancre, thromboembolic effects of Leishmaniasis, toxic epidermal necrolyis, shingles, early chicken pox lesions, bites from other arthropods and idiopathic dermal necrosis have all been misdiagnosed as spider bites. Almost all bites from spiders are inflicted by the spider in self defense, when a human inadvertently upsets or invades the spider’s space. Of spiders in the United States capable of biting, only a few are considered dangerous to human beings. Bites from the following species of spiders can result in serious sequelae: Louisiana Office of Public Health – Infectious Disease Epidemiology Section Page 1 of 14 The Brown Recluse: Loxosceles reclusa Photo Courtesy of the Texas Department of State Health Services The most common species associated with medically important spider bites: • Physical characteristics o Length: Approximately 1 inch o Appearance: A violin shaped mark can be visualized on the dorsum (top).
    [Show full text]
  • STUDIES on the DERMAPTERA of the PHILIPPINES1 by G
    Pacific Insects 17(1): 99-138 1 October 1976 STUDIES ON THE DERMAPTERA OF THE PHILIPPINES1 By G. K. Srivastava2 Abstract: This paper includes the description of 18 new species belonging to the genera Diplatys, Epilandex, Chaetospania, Auchenomus, Apachyus, Allostethus, Proreus, Adiathella, Kosmetor and Timomenus. Besides these, 2 species are reported for the first time from the Philippine Islands. Our knowledge of the fauna of the Philippine Islands is largely based on the works of Caudell (1904), BoreUi (1915a, b, 1916, 1917, 1918,1921,1923,1926), Brindle (1966,1967) and Ramamurthi (1967). Recently, Srivastava (in press) has studied a collection of earwigs belonging to the Field Museum of Natural History, Chicago, which has resulted in the description of 14 new species. The present paper contains an account of some Dermaptera recently received for study from the Bishop Museum, Honolulu, Hawaii. The collection comprises 55 species (excluding 22 represented by either females or nymphs, identified up to generic level only) belonging to 28 genera, of which 18 species are new to science and 2 others are reported for the first time from the Philippines. The genus Apachyus Serville, hitherto unknown from the Philippine Islands, is represented by a new species. For some species that are represented by a large series in the collection it has been possible to study in detail the range of variations. A few females and nymphs could not be identified because the taxonomy of the whole order is based mainly on males, which often makes identification difficult. The fauna of the Philippine Islands appears to be not only rich in the number of species but also in the multiplicity of individuals for some species.
    [Show full text]
  • The Occurrence of Stalk-Eyed Flies (Diptera, Diopsidae) in the Arabian Peninsula, with a Review of Cluster Formation in the Diopsidae Hans R
    Tijdschrift voor Entomologie 160 (2017) 75–88 The occurrence of stalk-eyed flies (Diptera, Diopsidae) in the Arabian Peninsula, with a review of cluster formation in the Diopsidae Hans R. Feijen*, Ralph Martin & Cobi Feijen Catalogue and distribution data are presented for the six Diopsidae species known to occur in the Arabian Peninsula: Sphyracephala beccarii, Chaetodiopsis meigenii, Diasemopsis aethiopica, Diopsis arabica, Diopsis mayae and Diopsis sp. (ichneumonea species group). The biogeographical aspects of their distribution are discussed. Records of Diopsis apicalis and Diopsis collaris are removed from the list for Arabia as these were based on misidentifications. Synonymies involving Diasemopsis aethiopica and Diasemopsis varians are discussed. Only one out of four specimens in the D. elegantula type series proved conspecific with D. aethiopica. The synonymy of D. aethiopica and D. varians is rejected. A lectotype for Diasemopsis elegantula is now designated. D. elegantula is proposed as junior synonym of D. varians. A fly cluster of more than 80,000 Sphyracephala beccarii, observed in Oman, is described. The occurrence of cluster formations in the Diopsidae is reviewed, while a possible explanation is indicated. Hans R. Feijen*, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. [email protected] Ralph Martin, University of Freiburg, Münchhofstraße 14, 79106 Freiburg, Germany Cobi Feijen, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Introduction catalogue for Diopsidae, Steyskal (1972) only re- Westwood (1837b) described Diopsis arabica as ferred to Westwood and Hennig as far as Diopsidae the first stalk-eyed fly from the Arabian Peninsula. in Arabia was concerned.
    [Show full text]
  • Development of the Cursorial Spider, Cheiracanthium Inclusum (Araneae: Miturgidae), on Eggs of Helicoverpa Zea (Lepidoptera: Noctuidae)1
    Development of the Cursorial Spider, Cheiracanthium inclusum (Araneae: Miturgidae), on Eggs of Helicoverpa zea (Lepidoptera: Noctuidae)1 R. S. Pfannenstiel2 Beneficial Insects Research Unit, USDA-ARS, Weslaco, Texas 78596 USA J. Entomol. Sci. 43(4): 418422 (October 2008) Abstract Development of the cursorial spider, Cheiracanthium inclusum (Hentz) (Araneae: Miturgidae), from emergence to maturity on a diet of eggs of the lepidopteran pest Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) was characterized. Cheiracanthium inclusum developed to adulthood with no mortality while feeding on a diet solely of H. zea eggs and water. The number of instars to adulthood varied from 4-5 for males and from 4-6 for females, although most males (84.6%) and females (66.7%) required 5 instars. Males and females took a similar time to become adults (54.2 ± 4.0 and 53.9 ± 2.0 days, respectively). Egg consumption was similar between males and females for the first 4 instars, but differed for the 51 instar and for the total number of eggs consumed to reach adulthood (651.0 ± 40.3 and 866.5 ± 51.4 eggs for males and females, respectively). Individual consumption rates suggest the potential for high impact of C. inclusum individuals on pest populations. Development was faster and survival greater than in previous studies of C. inc/usum development. Key Words spider development, egg predation Spiders have been observed feeding on lepidopteran eggs in several crops (re- viewed by Nyffeler et al. 1990), but only recently has the frequency of these obser- vations (Pfannenstiel and Yeargan 2002, Pfartnenstiel 2005, 2008) suggested that lepidopteran eggs may be a common prey item for some families of cursorial spiders.
    [Show full text]
  • Integrated Pest Management of the Mexican Rice Borer in Louisiana and Texas Sugarcane and Rice Francis P
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice Francis P. F. Reay-Jones Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Reay-Jones, Francis P. F., "Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice" (2005). LSU Doctoral Dissertations. 761. https://digitalcommons.lsu.edu/gradschool_dissertations/761 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTEGRATED PEST MANAGEMENT OF THE MEXICAN RICE BORER IN LOUISIANA AND TEXAS SUGARCANE AND RICE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the formal requirements for the degree of Doctor of Philosophy in The Department of Entomology by Francis P. F. Reay-Jones B.S., Université Bordeaux 1, 1999 M.S., Université d’Angers/Institut National d’Horticulture, 2001 August 2005 ACKNOWLEDGEMENTS I wish to express my gratitude to my major advisor, Dr. Thomas E. Reagan, for his guidance, motivation, and also for introducing me with great enthusiasm to LSU football and Cajun cuisine. I would like to express my appreciation to my graduate committee, Drs. Benjamin L Legendre, E.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Addenda to the Insect Fauna of Al-Baha Province, Kingdom of Saudi Arabia with Zoogeographical Notes Magdi S
    JOURNAL OF NATURAL HISTORY, 2016 VOL. 50, NOS. 19–20, 1209–1236 http://dx.doi.org/10.1080/00222933.2015.1103913 Addenda to the insect fauna of Al-Baha Province, Kingdom of Saudi Arabia with zoogeographical notes Magdi S. El-Hawagrya,c, Mostafa R. Sharafb, Hathal M. Al Dhaferb, Hassan H. Fadlb and Abdulrahman S. Aldawoodb aEntomology Department, Faculty of Science, Cairo University, Giza, Egypt; bPlant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; cSurvey and Classification of Agricultural and Medical Insects in Al-Baha Province, Al-Baha University, Al-Baha, Saudi Arabia ABSTRACT ARTICLE HISTORY The first list of insects (Arthropoda: Hexapoda) of Al-Baha Received 1 April 2015 Province, Kingdom of Saudi Arabia (KSA) was published in 2013 Accepted 30 September 2015 and contained a total of 582 species. In the present study, 142 Online 9 December 2015 species belonging to 51 families and representing seven orders KEYWORDS are added to the fauna of Al-Baha Province, bringing the total Palaearctic; Afrotropical; number of species now recorded from the province to 724. The Eremic; insect species; reported species are assigned to recognized regional zoogeogra- Arabian Peninsula; Tihama; phical regions. Seventeen of the species are recorded for the first Al-Sarah; Al-Sarawat time for KSA, namely: Platypleura arabica Myers [Cicadidae, Mountains Hemiptera]; Cletomorpha sp.; Gonocerus juniperi Herrich-Schäffer [Coreidae, Hemiptera]; Coranus lateritius (Stål); Rhynocoris bipus- tulatus (Fieber) [Reduviidae, Hemiptera]; Cantacader iranicus Lis; Dictyla poecilla Drake & Hill [Tingidae, Hemiptera]; Mantispa scab- ricollis McLachlan [Mantispidae, Neuroptera]; Cerocoma schreberi Fabricius [Meloidae, Coleoptera]; Platypus parallelus (Fabricius) [Curculionidae, Coleoptera]; Zodion cinereum (Fabricius) [Conopidae, Diptera]; Ulidia ?ruficeps Becker [Ulidiidae, Diptera]; Atherigona reversura Villeneuve [Muscidae, Diptera]; Aplomya metallica (Wiedemann); Cylindromyia sp.
    [Show full text]
  • Cyclic Glycerol Acetals from the Abdominal Hair Pencil Secretion of the Male African Sugarcane Borer Eldana Saccharina (Lepidoptera: Pyralidae) B
    Cyclic Glycerol Acetals from the Abdominal Hair Pencil Secretion of the Male African Sugarcane Borer Eldana saccharina (Lepidoptera: Pyralidae) B. V. Burger, A. E. Nell, D. Smit, and H. S. C. Spies Laboratory for Ecological Chemistry, Department of Chemistry, University of Stellenbosch, Stellenbosch 7600, South Africa Z. Naturforsch. 46c, 678-686 (1991); received January 8, 1991 Cyclic Acetals, Darmstoff, Eldana saccharina, Mass Spectrometry, NMR Four constituents of the hair pencil secretion of the male African sugarcane stalk borer, Eldana saccharina, having a molecular mass of 312 and peculiar El mass spectra with an excep­ tionally abundant base peak at m/z 103, were isolated preparatively from an extract of the se­ cretion. Using 'H and l3C NMR spectral analysis, these constituents were identified as five- and six-membered cyclic glycerol acetals of Z-9-hexadecenal, viz. cis- and trans-2-(Z- 8-pentadecenyl)-4-hydroxymethyl-l,3-dioxolane, and cis- and fra«s-2-(Z-8-pentadecenyl)- 5-hydroxy-l,3-dioxane. These compounds are related to the 2-alkenyl-4-hydroxymethyl-l,3- dioxolane dihydrogen phosphate esters, known to be the active constituents of the smooth muscle contracting acidic phospholipid (Darmstoff) which was isolated from the intestine of mammals. The presence of these acetals in the tail brush secretion of E. saccharina could possi­ bly be the first evidence that compounds related to the active principle of Darmstoff, may also be present in the insect kingdom. The possibility that these four compounds or their dihydro­ gen phosphate esters might play a part in the eversion or retraction of the tail brushes of the male insect, is briefly discussed.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Araneae, Theridiidae)
    Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism.
    [Show full text]
  • Hymenoptera: Braconidae), Parasitoids of Gramineous Stemborers in Africa
    Eur. J. Entomol. 107: 169–176, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1524 ISSN 1210-5759 (print), 1802-8829 (online) Host recognition and acceptance behaviour in Cotesia sesamiae and C. flavipes (Hymenoptera: Braconidae), parasitoids of gramineous stemborers in Africa MESHACK OBONYO1, 2, FRITZ SCHULTHESS3, BRUNO LE RU 2, JOHNNIE VAN DEN BERG1 and PAUL-ANDRÉ CALATAYUD2* 1School of Environmental Science and Development, North-West University, Potchefstroom, 2520, South Africa 2Institut de Recherche pour le Développement (IRD), UR 072, c/o International Centre of Insect Physiology and Ecology ( ICIPE), Noctuid Stemborer Biodiversity (NSBB) Project, PO Box 30772-00100, Nairobi, Kenya and Université Paris-Sud 11, 91405 Orsay, France 3ICIPE, Stemborer Biocontrol Program, PO Box 30772-00100, Nairobi, Kenya Key words. Hymenoptera, Braconidae, Cotesia sesamiae, C. flavipes, Lepidoptera, Pyralidae, Eldana saccharina, Noctuidae, Busseola fusca, Chilo partellus, parasitoids, host recognition, host acceptance, stemborers, Africa Abstract. The host recognition and acceptance behaviour of two braconid larval parasitoids (Cotesia sesamiae and C. flavipes) were studied using natural stemborer hosts (i.e., the noctuid Busseola fusca for C. sesamiae, and the crambid Chilo partellus for C. flavi- pes) and a non-host (the pyralid Eldana saccharina). A single larva was introduced into an arena together with a female parasitoid and the behaviour of the wasp recorded until it either stung the larva or for a maximum of 5 min if it did not sting the larva. There was a clear hierarchy of behavioural steps, which was similar for both parasitoid species. In the presence of suitable host larvae, after a latency period of 16–17 s, the wasp walked rapidly drumming the surface with its antennae until it located the larva.
    [Show full text]