An Investigation of the Ichthyofaunal By-Catch Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
By Species Items
1 Fish, crustaceans, molluscs, etc Capture production by species items Mediterranean and Black Sea C-37 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Méditerranée et mer Noire (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Mediterráneo y Mar Negro English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 1998 1999 2000 2001 2002 2003 2004 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 495 335 336 108 47 7 10 Common carp Cyprinus carpio 11 3 1 - 2 3 4 4 Roach Rutilus rutilus 11 1 1 2 7 11 12 5 Roaches nei Rutilus spp 11 13 78 73 114 72 83 47 Sichel Pelecus cultratus 11 105 228 276 185 147 52 39 Cyprinids nei Cyprinidae 11 - - 167 159 95 141 226 European perch Perca fluviatilis 13 - - - 1 1 - - Percarina Percarina demidoffi 13 - - - - 18 15 202 Pike-perch Stizostedion lucioperca 13 3 031 2 568 2 956 3 504 3 293 2 097 1 043 Freshwater fishes nei Osteichthyes 13 - - - 17 - 249 - Danube sturgeon(=Osetr) Acipenser gueldenstaedtii 21 114 36 20 8 10 3 3 Sterlet sturgeon Acipenser ruthenus 21 - - 0 - - - - Starry sturgeon Acipenser stellatus 21 13 11 5 3 5 1 1 Beluga Huso huso 21 12 10 1 0 4 1 3 Sturgeons nei Acipenseridae 21 290 185 59 22 23 14 8 European eel Anguilla anguilla 22 917 682 464 602 642 648 522 Salmonoids nei Salmonoidei 23 26 - - 0 - - 7 Pontic shad Alosa pontica 24 153 48 15 21 112 68 115 Shads nei Alosa spp 24 2 742 2 640 2 095 2 929 3 984 2 831 3 645 Azov sea sprat Clupeonella cultriventris 24 3 496 10 862 12 006 27 777 27 239 17 743 14 538 Three-spined stickleback Gasterosteus aculeatus 25 - - - 8 4 6 1 European plaice Pleuronectes platessa 31 - 0 6 7 7 5 5 European flounder Platichthys flesus 31 69 62 56 29 29 11 43 Common sole Solea solea 31 5 047 4 179 5 169 4 972 5 548 6 273 5 619 Wedge sole Dicologlossa cuneata 31 .. -
Estuarine Fish Diversity of Tamil Nadu, India
Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
TNP SOK 2011 Internet
GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2 -
A Retrospective Analysis of Shark Catches Made by Pelagic Longliners
OCEANOGRAPHIC RESEARCH INSTITUTE, DURBAN, SOUTH AFRICA, AFFILIATED WITH THE UNIVERSITY OF KWAZULU-NATAL A retrospective analysis of shark catches made by pelagic longliners off the east coast of South Africa and biology and life history of shortfin mako shark, Isurus oxyrinchus Submitted in fulfillment of the academic requirements for the degree of Master of Science in the Oceanographic Research Institute, affiliated with the School of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban. By Alan Foulis February 2013 i i. Abstract Oceanic pelagic shark species are under threat worldwide as fishing effort increases and they are taken as both targeted and bycatch. It is widely recognized that the life history characteristics of sharks make them inherently susceptible to over- exploitation and as a result many shark-directed fisheries have collapsed. It is therefore essential that good-quality data are collected and analyzed in order to provide fisheries managers with the right information to manage these species sustainably. South Africa has a pelagic longline fishery which includes tuna-, swordfish-, and shark-directed vessels. This study analyzed logbook (1998 – 2010) and observer data (2002 – 2010) provided by the Department of Agriculture, Forestry and Fisheries in order to assess the catch composition and standardized catch-per-unit-effort (CPUE) of sharks captured as both targeted catch and bycatch. The study area consisted of four zones moving east of the 20°E meridian: the Agulhas Bank (20°E – 24°E), South Coast (25°E – 29°E), East Coast 1 (30°E – 32.8°E), and East Coast 2 (32.9°E – 36.5°E). -
Marine Fishes of the Azores: an Annotated Checklist and Bibliography
MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores. -
Length-Weight Relationship and Growth of the Striped Seabream Lithognathus Mormyrus
International Journal of Fisheries and Aquaculture Research Vol.2, No.2, pp.19-27, June 2016 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) LENGTH-WEIGHT RELATIONSHIP AND GROWTH OF THE STRIPED SEABREAM LITHOGNATHUS MORMYRUS (LINNAEUS, 1758) FROM AL HANEAH FISH LANDING SITE, MEDITERRANEAN SEA, EASTERN LIBYA Ramadan A. S. Ali1, Eyman Faraj Abd Alssalam1, Sayed Mohamed Ali1*, Mohammad El Sayed El Sayed El Mor1,2 and Mohammed El-Mabrouk1 1Department of Zoology, Omar Al-Mukhtar University, Al Bayda, Libya 2Suez Canal University, Department of Marine Biology, Egypt ABSTRACT: Length-weight relationship and growth characteristics of the striped Seabream Lithognathus mormyrus (Linnaeus, 1758) was established using 164 fish collected from Al- Haneah (eastern Libya, Mediterranean Sea) artisanal catch during March to October 2015. The power relationship between total weight (W in gm) and total length (L in cm) for L. ^3.0008 mormyrus was highly isometric: W = 0.0132L (R2 = 0.8291). The length based von Bertalanffy equation of the order: Lt = L∞ (1 – exp (-K (t –t0 ))) was Lt = 30.465 (1 – exp (- 0.159 (t + 2.5435))). The weight based equation was Wt = 374.2523 (1 – exp (- 0.159 (t + 2.5435))) 3.0008. The growth index was low: ɸ = 2.169. KEYWORDS: Striped Seabream, Sand Steenbras, Lithognathus Mormyrus, Length-Weight Relationship, Von Bertalanffy Growth Equation, Mediterranean Sea, Libya INTRODUCTION L. mormyrus, Family: Sparidae, is a medium size fish demersal on sandy bottoms of subtropical littoral waters of the eastern Atlantic Ocean, the Mediterranean sea, the Red sea and the southwestern Indian Ocean. -
Rapport (2.454Mb)
NINA28 Report 55 Movements and area use by small spotted grunter (Pomadasys commersonnii) in the Great Fish Estuary (South Africa): implication for management T.F. Næsje, A.R. Childs, P.D. Cowley, E.B. Thorstad, F. Økland, S. Weerts and P. Buthelezi Øvre venstre hjørne på konvolutt Øvre venstre hjørne på konvolutt Øvre venstre hjørne på konvolutt E6/5 T EAMWORK E NTHUSIASM I NTEGRITY Q UALITY Cooperation and expertise for a sustainable future . Movements and area use by small spotted grunter (Pomadasys commersonnii) in the Great Fish Estuary (South Africa): implication for management T.F. Næsje1, A.R. Childs2, P.D. Cowley3, E.B. Thorstad1, F. Økland1, S. Weerts4 and P. Buthelezi4 1 Norwegian Institute for Nature Research (NINA), Tungasletta 2, NO-7485 Trondheim, Norway 2 Department of Ichthyology and Fisheries Science (DIFS), Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa 3 South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown, South Africa 4 Zoology Department, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa NINA Report 55 Næsje, T.F., Childs, A.R., Cowley, P.D., Thorstad, E.B., Økland, F., Weerts, S., and Buthelezi, P. 2005. Movements and area use by small spotted grunter (Pomadasys commersonnii) in the Great Fish Estuary (South Africa): implication for management. - NINA Report 55. 46 pp. Trondheim, May 2005 ISSN: 1504-3312 ISBN: 82-426-1588-8 (pdf) COPYRIGHT © Norwegian Institute for Nature Reseach (NINA) and South African Institute for Aquatic Biodiversity (SAIAB). The publication may be freely cited where the source is acknowledged. AVAILABILITY Open QUALITY CONTROLLED BY Odd Terje Sandlund, NINA RESPONSIBLE SIGNATURE Research director Odd Terje Sandlund (sign.) CLIENT(S) The South Africa / Norway Programme on Research Collaboration (National Research Foundation of South Africa, and Research Council of Norway) PHOTOES T. -
Molecular Clocks Provide New Insights Into the Evolutionary History of Galeichthyine Sea Catfishes
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2009.00640.x MOLECULAR CLOCKS PROVIDE NEW INSIGHTS INTO THE EVOLUTIONARY HISTORY OF GALEICHTHYINE SEA CATFISHES Ricardo Betancur-R.1,2 and Jonathan W. Armbruster1 1Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, Alabama 36849 2E-mail: [email protected] Received August 28, 2008 Accepted January 7, 2009 Intercontinental distributions in the southern hemisphere can either be the result of Gondwanan vicariance or more recent transoceanic dispersal. Transoceanic dispersal has come into vogue for explaining many intercontinental distributions; however, it has been used mainly for organisms that can float or raft between the continents. Despite their name, the Sea Catfishes (Ariidae) have limited dispersal ability, and there are no examples of nearshore ariid genera with a transoceanic distribution except for Galeichthys where three species occur in southern Africa and one in the Peruvian coast. A previous study suggested that the group originated in Gondwana, and that the species arrived at their current range after the breakup of the supercontinent in the Early Cretaceous. To test this hypothesis, we infer molecular phylogenies (mitochondrial cytochrome b, ATP synthase 8/6, 12S, and 16S; nuclear rag2; total ∼4 kb) and estimate intercontinental divergence via molecular clocks (penalized-likelihood, Bayesian relaxed clock, and universal clock rates in fishes). Age ranges for cladogenesis of African and South American lineages are 15.4–2.5 my, far more recent than would be suggested by Gondwanan vicariance; thus, the distribution of galeichthyines must be explained by dispersal or more recent vicariant events. The nested position of the Peruvian species (Galeichthys peruvianus) within the African taxa is robust, suggesting that the direction of the dispersal was from Africa to South America. -
Checklist of the Marine Fishes from Metropolitan France
Checklist of the marine fishes from metropolitan France by Philippe BÉAREZ* (1, 8), Patrice PRUVOST (2), Éric FEUNTEUN (2, 3, 8), Samuel IGLÉSIAS (2, 4, 8), Patrice FRANCOUR (5), Romain CAUSSE (2, 8), Jeanne DE MAZIERES (6), Sandrine TERCERIE (6) & Nicolas BAILLY (7, 8) Abstract. – A list of the marine fish species occurring in the French EEZ was assembled from more than 200 references. No updated list has been published since the 19th century, although incomplete versions were avail- able in several biodiversity information systems. The list contains 729 species distributed in 185 families. It is a preliminary step for the Atlas of Marine Fishes of France that will be further elaborated within the INPN (the National Inventory of the Natural Heritage: https://inpn.mnhn.fr). Résumé. – Liste des poissons marins de France métropolitaine. Une liste des poissons marins se trouvant dans la Zone Économique Exclusive de France a été constituée à partir de plus de 200 références. Cette liste n’avait pas été mise à jour formellement depuis la fin du 19e siècle, © SFI bien que des versions incomplètes existent dans plusieurs systèmes d’information sur la biodiversité. La liste Received: 4 Jul. 2017 Accepted: 21 Nov. 2017 contient 729 espèces réparties dans 185 familles. C’est une étape préliminaire pour l’Atlas des Poissons marins Editor: G. Duhamel de France qui sera élaboré dans le cadre de l’INPN (Inventaire National du Patrimoine Naturel : https://inpn. mnhn.fr). Key words Marine fishes No recent faunistic work cov- (e.g. Quéro et al., 2003; Louisy, 2015), in which the entire Northeast Atlantic ers the fish species present only in Europe is considered (Atlantic only for the former). -
Gastrointestinal Helminth Parasites of Lithognathus Mormyrus (Linnaeus, 1758) (Perciformes Sparidae) in the Western Medi- Terranean Sea
Biodiversity Journal , 2018, 9 (1): 9–18 Gastrointestinal helminth parasites of Lithognathus mormyrus (Linnaeus, 1758) (Perciformes Sparidae) in the Western Medi- terranean Sea Amel Bellal *, Naouel Amel Brahim Tazi, Mustapha Charane & Zakia Hadjou Laboratoire Réseau de Surveillance Environnementale (LRSE), Département de Biologie, Faculté des Sciences de la Nature et de la Vie, Université d’Oran1, Ahmed Ben Bella, Algeria; e-mail: [email protected] *Corresponding author ABSTRACT Between December 2014 and April 2016, 235 specimens of striped seabream Lithognathus mormyrus (Linnaeus, 1758) (Perciformes Sparidae) caught along the western Algerian coast were examined for helminth parasites. This taxa includes 5 monogeneans ( Lamellodiscus fla - gellatus , L. ignoratus , L. mormyri , L. verberis and Pagellicotyle mormyri ), 13 digeneans ( Le - pidauchen stenostoma , Derogenes latus , Magnibursatus bartolii , Proctoeces maculatus , Holorchis pycnoporus , Lepocreadium album , L. pegorchis , Macvicaria maamouriae , M. mail - lardi , M. mormyri , Pycnadenoides senegalensis , Diphterostomum brusinae and Zoogonus rubellus ), 3 nematodes ( Hysterothylacium rhacodes , Dichelyne tripapillatus and Ascarophis sp.), 1 cestode ( Scolex pleuronectis ) and 2 Acanthocephala ( Acanthocephaloides propinquus and A. incrassatus ). All the species were recorded for the first time in the western Algerian coast in this host. Furthermore, Lepidauchen stenostoma and Hysterothylacium rhacodes are reported for the first time in the western Mediterranean. Magnibursatus bartolii , Zoogonus rubellus , Dichelyne tripapillatus , Ascarophis sp. and Scolex pleuronectis provide a new host record in Lithognathus mormyrus from the Mediterranean Sea. Epidemiological indexes (pre - valence, abundance and mean intensity) were calculated for each helminth species identified in this fish. The Algerian west coast shows the highest value in the helminth species richness among all the Mediterranean coasts. KEY WORDS Helminthfauna; Lithognathus mormyrus ; Mediterranean Sea; Sparidae. -
Three-Dimensional Characterisation of Osteocyte Volumes at Multiple Scales, and Its Relationship with Bone Biology and Genome Evolution in Ray-Finned Fishes
bioRxiv preprint doi: https://doi.org/10.1101/774778; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. PREPRINT Three-dimensional characterisation of osteocyte volumes at multiple scales, and its relationship with bone biology and genome evolution in ray-finned fishes Donald Davesne1,*, Armin D. Schmitt1, Vincent Fernandez2,3, Roger B. J. Benson1, Sophie Sanchez2,4 1 Department of Earth Sciences, University of Oxford, United Kingdom 2 European Synchrotron Radiation Facility, Grenoble, France 3 Imaging and Analysis Centre, Natural History Museum, London, United Kingdom 4 Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Sweden * Corresponding author: [email protected]; [email protected] Abstract Osteocytes, cells embedded within the bone mineral matrix, inform on key aspects of vertebrate biology. In particular, a relationship between volumes of the osteocytes and bone growth and/or genome size has been proposed for several tetrapod lineages. However, the variation in osteocyte volume across different scales is poorly characterised, and mostly relies on incomplete, two-dimensional information. In this study, we propose to characterise the variation of osteocyte volumes in ray-finned fishes (Actinopterygii), a clade including more than half of modern vertebrate species in which osteocyte biology is poorly known. We use X-ray synchrotron micro computed tomography (SRµCT) to achieve a three-dimensional visualisation of osteocytes and direct measurement of their volumes.