The Energy Transition and the Advent of Hydrogen Economy TECNICA

Total Page:16

File Type:pdf, Size:1020Kb

The Energy Transition and the Advent of Hydrogen Economy TECNICA TECNICA ITALIANA-Italian Journal of Engineering Science Vol. 64, No. 1, March, 2020, pp. 11-16 Journal homepage: http://iieta.org/journals/ti-ijes The Energy Transition and the Advent of Hydrogen Economy Matilde Pietrafesa DICEAM, Mediterranea University, Reggio Calabria 89121, Italy Corresponding Author Email: [email protected] https://doi.org/10.18280/ti-ijes.640103 ABSTRACT Received: 7 January 2020 Climate change according to almost all experts is a consolidated reality; the responsibility Accepted: 18 January 2020 for these changes in the terrestrial ecosystem is largely attributable to man and in particular to activities related to the use of fossil fuels and deforestation. Keywords: In order to deal with these emergencies, in the near future a new sustainable energy climate change, sustainable energy, paradigm should be established, fully implementing the decarbonization process and based paradigm decarbonization, renewable on distributed micro-generation from renewable energy sources (RES), smart grids, energy energy sources, hydrogen and fuel cells storage and hydrogen. Energy production from RES, characterized by variable temporal availability, unpredictable over time, can efficiently meet the needs if coupled with storage systems (mechanical, electrical, chemical, thermal, biological, etc.): it follows that thanks to its energy performance and its environmental sustainability, the interest in hydrogen as energy carrier (it is clean, versatile and has high combustion efficiency) is growing today. The paper illustrates the characteristics and properties of hydrogen, together with its production and storage techniques and its uses, highlighting how, thanks to its environmental sustainability, it could play the role of energy carrier of the future in the new decarbonized energy paradigm. 1. CLIMATE CHANGE AND THE NEED FOR A NEW contained in the Directive 2009/28/EC, so-called Climate- ENERGY PARADIGM Energy, on climate change and energy sustainability [2], has set three important objectives for 2020: Nowadays almost all climate experts agree that climate change is a consolidated reality, the responsibility for which is largely attributable to man, especially to activities related to the use of fossil fuels, which have caused upheavals of the terrestrial ecosystem, and deforestation. The main among the bodies involved in climate change is the Intergovernmental Panel on Climate Change (IPCC), established in 1988 by the United Nations and the World Meteorological Organization (WMO), which is responsible for the scientific evaluation of these phenomena and their potential environmental and socio-economic impact. Worldwide, the average earth temperature has increased by about 0.8°C since 1880 (Figure 1), while on the European continent there has been a greater raise (around 1.4 °C), and a future increase of 4°C cannot be excluded. IPCC has estimated in 2°C the global average temperature increase, compared to the pre-industrial period, in order to avoid dramatic consequences for the planet [1]. Thus was born the need to take on shared commitments at an international level by directing the energy system on a virtuous path, started in December 2015 with the 21st climate conference held in Paris (COP21) and the Agreement stipulated therein, and to assume the consequent actions necessary to implement it. In Europe, member countries purchase oil from OPEC nations and Russia and still natural gas from Algeria, Norway and Russia itself. To limit this dependence on other states and to reduce carbon emissions, the European Union is incisively encouraging member countries towards a low carbon economy. In particular EU, referring to the third point of the strategy Figure 1. Temperature increase on planet surface 11 • 20% greenhouse gas emissions reduction compared to 1990 sources (small electricity production plants, isolated or • 20% energy production from renewable sources interconnected, placed close to the end user), energy storage • 20% reduction of primary energy consumption compared and hydrogen [5-8]. to 1990. The production from RES, characterized by variable temporal availability, unpredictable over time, can in fact As regards the framework to 2030, moreover, the Directive efficiently meet energy needs if coupled with storage systems requires a further reduction of greenhouse gas emissions, (mechanical, electrical, chemical, thermal, biological, etc.): it bringing it to 40% compared to 1990, and to 27% both the follows that thanks to its energy performance and its increase in the share of energy produced from renewable environmental sustainability, the interest in hydrogen as energy sources and in energy efficiency [3]. energy carrier is growing today [9-11]. This would lead by 2050, according to the expected In particular, one of the most environmentally sustainable European road map [4], to 80% reductions of CO2 emissions techniques for the accumulation of electricity produced from related to the energy sector, including those of the transport renewable energy consists in its use as a primary source for the sector, with electricity consumption from RES equal to 97%, production of electrolytic hydrogen, which is then converted thus establishing a safe, competitive and decarbonized energy back into electricity in fuel cells [12, 13]. system. Production can take place both in large plants and in small generative units close to the end user and can affect multiple sectors (electrical production, transport, air conditioning, etc.) 2. THE DECARBONIZATION PROCESS AND THE [14, 15]. ENERGY TRANSITION TOWARDS A HYDROGEN The fuel cells for its conversion could potentially produce ECONOMY electricity to meet the future needs of humanity, but triggering the transition from the era of fossil fuels to that of hydrogen 2.1 The decarbonization process will not be easy: producing hydrogen is still too expensive, so currently most fuel cells are powered by methane or other The new and sustainable energy paradigm that should be fossil fuels. established in the near future should fully implement a Furthermore, connecting millions of fuel cells to the grid decarbonization process: the term indicates the change in the will not be immediate and will require extremely sophisticated carbon-hydrogen ratio in the temporal succession of the control and distribution mechanisms (smart grids), capable of different energy sources. regulating traffic both in normal and peak periods. Wood, the primary energy source for most of human history, The new energy network will have to be interactive, has the highest carbon-hydrogen ratio, with ten carbon atoms equipped with integrated sensors and intelligent agents to for each hydrogen atom; among fossil fuels coal has the provide real-time information on demand conditions, in order highest ratio, with a value of 2:1, oil has one carbon atom for to allow the flow of electricity exactly where and when it is two of hydrogen, while natural gas has only one to four: this needed. means that energy sources gradually used over time have The problem of the current electricity distribution network, emitted less carbon dioxide than the previous ones. on the other hand, is that of being designed to ensure a one- In the last one hundred and forty years, even if total CO2 way energy flow, from the producer to the end user, so emissions have continuously increased, the carbon emission transforming it into an interactive network of millions of small per unit of primary energy globally consumed has decreased suppliers-users will require enormous efforts. by about 0.3% per year: hydrogen would therefore represent the completion of the decarbonization path, being free of 2.3 Hydrogen as the energy carrier of the future carbon atoms. Its emergence as primary energy source of the future is In the 70s of the twentieth century, in conjunction with the therefore an indication of the end of the long dominance of first oil crisis, the need arose to identify and develop new hydrocarbon-based energy production. energy frontiers, seeing hydrogen as an excellent opportunity In addition to the progressive elimination of carbon atoms, to overcome the dependence linked to fossil fuels. decarbonising has also meant the dematerialization of fuels, During the 1980s the end of the crisis and the collapse of which have gone from solid (wood and coal) to liquid the oil price caused a slowdown in the studies that were being (petroleum), to gaseous (natural gas and hydrogen): hydrogen carried out, but in the 1990s climate changes due to carbon is in fact the lightest and most intangible form of energy and emissions gave new impetus to research: as a consequence of the most efficient in combustion for the same weight (three this, since then the interest in the use of hydrogen is growing, times that of oil). thanks to its environmental sustainability and its energy The transition from solid energy forms to liquid and gaseous performance (it is clean, versatile and has high combustion ones has also made flows into the system easier and more efficiency) [16-19]. efficient: in pipelines oil travels faster than coal in railway Indeed: wagons and gas in pipelines is in turn faster than oil; moreover • its combustion provides only water as a by-product (no it allowed flourishing of technologies, goods and services that greenhouse gases) tend to speed, efficiency, lightness and virtuality. • it is suitable for stationary applications, in transports (vehicles, aircraft, boats), in air conditioning and portable 2.2 The transition to a new energy paradigm
Recommended publications
  • Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
    Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times.
    [Show full text]
  • Energy and the Hydrogen Economy
    Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself.
    [Show full text]
  • Power to the Plug an INTRODUCTION to ENERGY, ELECTRICITY, CONSUMPTION, and EFFICIENCY
    Power to the Plug AN INTRODUCTION TO ENERGY, ELECTRICITY, CONSUMPTION, AND EFFICIENCY What is Energy? U.S. ENERGY Energy CONSUMPTION Consumption BY SOURCE, 2009 by Source, 2009 Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven NONRENEWABLE RENEWABLE and keeps ice frozen in the freezer. It plays our favorite songs on PETROLEUM 36.5% BIOMASS 4.1% the radio and lights our homes. Energy makes our bodies grow Uses: transportation, Uses: heating, electricity, and allows our minds to think. Scientists define energy as the manufacturing transportation ability to do work. NATURAL GAS 24.7% HYDROPOWER 2.8% Uses: heating, Uses: electricity manufacturing, electricity Sources of Energy COAL 20.9% WIND 0.7% Uses: electricity, Uses: electricity We use many different energy sources to do work for us. They manufacturing are classified into two groups—renewable and nonrenewable. In the United States, most of our energy comes from URANIUM 8.8% GEOTHERMAL 0.4% Uses: electricity Uses: heating, electricity nonrenewable energy sources. Coal, petroleum, natural gas, propane, and uranium are nonrenewable energy sources. They PROPANE 0.9% SOLAR 0.1% are used to make electricity, heat our homes, move our cars, Uses: heating, Uses: heating, electricity manufacturing and manufacture all kinds of products. These energy sources are called nonrenewable because their supplies are limited. Source: Energy Information Administration Petroleum, for example, was formed millions of years ago from the remains of ancient sea plants and animals. We can’t make U.S. ENERGY CONSUMPTION BY SECTOR AND TOP SOURCES, 2009 more crude oil deposits in a short time.
    [Show full text]
  • Natural and Additional Energy– Marc A
    THEORY AND PRACTICES FOR ENERGY EDUCATION, TRAINING, REGULATION AND STANDARDS – Natural and Additional Energy– Marc A. Rosen NATURAL AND ADDITIONAL ENERGY Marc A. Rosen Department of Mechanical Engineering, Ryerson Polytechnic University, Toronto, Ontario, Canada Keywords: Natural energy, additional energy, renewable energy, sustainable development, efficiency, energy source, energy currency. Contents 1 Introduction 2 Energy 2.1. Energy Forms, Sources and Carriers 2.2. Natural and Additional Energy 2.2.1. Natural Energy 2.2.2. Additional Energy 3 Energy-Conversion Technologies 4 Energy Use 4.1. Energy Use in Countries, Regions and Sectors 4.2. Impact of Energy Use on the Environment 4.2.1. General Issues 4.2.2. Combustion of Fossil Fuels 5 Energy Selections 6 Energy Efficiency 6.1. Efficiencies and Other Measures of Merit for Energy Use 6.2. Improving Energy Efficiency 6.3. Limitations on Increased Energy Efficiency 6.3.1. Practical Limitations on Energy Efficiency 6.3.2. Theoretical Limitations on Energy Efficiency 6.3.3. Illustrative Example 7 Energy and Sustainable Development 8 Case Study: Increasing Energy-Utilization Efficiency Cost-Effectively in a University 8.1. Introduction 8.2. Background 8.3. IndependentUNESCO Measures (1989-92) – EOLSS 8.4. ESCO-Related Measures (1993-95) 8.5. Closing Remarks for Case Study 9 Closing RemarksSAMPLE CHAPTERS Bibliography Biographical Sketches Summary Energy is used in almost all facets of life and in all countries, and directly impacts living standards. Energy forms can be categorized in many ways, one of which is natural and additional energy. This article describes these energy categories and their applications. In ©Encyclopedia of Life Support Systems (EOLSS) THEORY AND PRACTICES FOR ENERGY EDUCATION, TRAINING, REGULATION AND STANDARDS – Natural and Additional Energy– Marc A.
    [Show full text]
  • Hydrogen Energy Storage: Grid and Transportation Services February 2015
    02 Hydrogen Energy Storage: Grid and Transportation Services February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy EfficiencyWorkshop Structure and Renewable / 1 Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Grid and Transportation Services February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sacramento, California, May 14 –15, 2014 M. Melaina and J. Eichman National Renewable Energy Laboratory Prepared under Task No. HT12.2S10 Technical Report NREL/TP-5400-62518 February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 www.nrel.gov NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • DOE Hydrogen and Fuel Cell Perspectives and Overview of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) Dr
    DOE Hydrogen and Fuel Cell Perspectives and Overview of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) Dr. Sunita Satyapal, Director, U.S. Dept. of Energy Hydrogen and Fuel Cells Program Global America Business Institute (GABI) Virtual Workshop July 1, 2020 Hydrogen – Part of a Comprehensive Energy Strategy H2 can be produced Many applications High energy content by mass from diverse rely on or could Nearly 3x more than conventional fuels domestic sources benefit from H2 Low energy content by volume Clean , sustainable, versatile, and efficient energy carrier U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE 2 Guiding Legislation and Budget Hydrogen and Fuel Cell Technologies FY 2020 ($K) History: DOE efforts in fuel cells began in the mid-1970s, ramped Office (HFTO) Subprograms up 1990s, and 2003-2009 Fuel Cell R&D 26,000 Energy Policy Act (2005) Title VIII on Hydrogen Hydrogen Fuel R&D 45,000 Hydrogen Infrastructure R&D • Authorizes U.S. DOE to lead a comprehensive program to enable 25,000 commercialization of hydrogen and fuel cells with industry. • Technology Acceleration includes Includes broad applications: Transportation, utility, industrial, 41,000 portable, stationary, etc. Systems Development & Integration Safety, Codes, and Standards Program To Date 10,000 • $100M to $250M per year since ~2005 Systems Analysis 3,000 • >100 organizations & extensive collaborations including Total $150,000 national lab-industry-university consortia DOE Office Appropriations ($K) FY20 • Includes H2 production, delivery, storage, fuel cells and cross cutting activities (e.g. codes, standards, tech acceleration) EERE (HFTO) - Lead $150,000 Fossil Energy (inc.
    [Show full text]
  • Heating/Cooling Fuel Deployment (Fossil/Renewables) Work Package 1
    EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR ENERGY Directorate C. 2 – New energy technologies, innovation and clean coal Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables) Work package 1: Final energy consumption for the year 2012 Final report, September 2016 Prepared for: European Commission under contract N°ENER/C2/2014-641 Disclaimer The information and views set out in this study are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Authors Fraunhofer Institute for Systems and Innovation Research (ISI) Project coordination, lead WP4 Tobias Fleiter ([email protected]) Jan Steinbach ([email protected]) Mario Ragwitz ([email protected]) Marlene Arens, Ali Aydemir, Rainer Elsland, Tobias Fleiter, Clemens Frassine, Andrea Herbst, Simon Hirzel, Michael Krail, Mario Ragwitz, Matthias Rehfeldt, Matthias Reuter, Jan Stein- bach Breslauer Strasse 48, 76139 Karlsruhe, Germany Fraunhofer Institute for Solar Energy Systems (ISE) Lead WP2 Jörg Dengler, Benjamin Köhler, Arnulf Dinkel, Paolo Bonato, Nauman Azam, Doreen Kalz Heidenhofstr. 2, 79110 Freiburg, Germany Institute for Resource Efficiency and Energy Strategies GmbH (IREES) Lead WP5 Felipe Andres Toro, Christian Gollmer, Felix Reitze, Michael Schön, Eberhard Jochem Schönfeldstr. 8,76131 Karlsruhe, Germany Observ'ER Frédéric Tuillé, GaëtanFovez, Diane Lescot 146 rue de l'Université, 75007 Paris, France TU Wien - Energy Economics Group (EEG) Lead WP3 Michael Hartner, Lukas Kranzl, Andreas Müller, Sebastian Fothuber, Albert Hiesl, Marcus Hummel, Gustav Resch, Eric Aichinger, Sara Fritz, Lukas Liebmann, Agnė Toleikytė Gusshausstrasse 25-29/370-3, 1040 Vienna, Austria TEP Energy GmbH (TEP) Lead WP1 Ulrich Reiter, Giacomo Catenazzi, Martin Jakob, Claudio Naegeli Rotbuchstr.68, 8037 Zurich, Switzerland Quality Review Prof.
    [Show full text]
  • Renewable Energy Carriers: Hydrogen Or Liquid Air / Nitrogen? Yongliang Li, Haisheng Chen, Xinjing Zhang, Chunqing Tan, Yulong Ding
    Renewable energy carriers: Hydrogen or liquid air / nitrogen? Yongliang Li, Haisheng Chen, Xinjing Zhang, Chunqing Tan, Yulong Ding To cite this version: Yongliang Li, Haisheng Chen, Xinjing Zhang, Chunqing Tan, Yulong Ding. Renewable energy carriers: Hydrogen or liquid air / nitrogen?. Applied Thermal Engineering, Elsevier, 2010, 30 (14-15), pp.1985. 10.1016/j.applthermaleng.2010.04.033. hal-00660111 HAL Id: hal-00660111 https://hal.archives-ouvertes.fr/hal-00660111 Submitted on 16 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Renewable energy carriers: Hydrogen or liquid air / nitrogen? Authors: Yongliang Li, Haisheng Chen, Xinjing Zhang, Chunqing Tan, Yulong Ding PII: S1359-4311(10)00196-1 DOI: 10.1016/j.applthermaleng.2010.04.033 Reference: ATE 3093 To appear in: Applied Thermal Engineering Received Date: 29 October 2009 Revised Date: 24 April 2010 Accepted Date: 30 April 2010 Please cite this article as: Y. Li, H. Chen, X. Zhang, C. Tan, Y. Ding. Renewable energy carriers: Hydrogen or liquid air / nitrogen?, Applied Thermal Engineering (2010), doi: 10.1016/ j.applthermaleng.2010.04.033 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power (Tonnes/Year)
    Technical Report Hydrogen Resource Assessment NREL/TP-560-42773 Hydrogen Potential from Coal, Natural February 2009 Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann Technical Report Hydrogen Resource Assessment NREL/TP-560-42773 Hydrogen Potential from Coal, Natural February 2009 Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann Prepared under Task No. H278.2100 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S.
    [Show full text]
  • EU Hydrogen Policy Hydrogen As an Energy Carrier for a Climate-Neutral Economy
    BRIEFING Towards climate neutrality EU hydrogen policy Hydrogen as an energy carrier for a climate-neutral economy SUMMARY Hydrogen is expected to play a key role in a future climate-neutral economy, enabling emission-free transport, heating and industrial processes as well as inter-seasonal energy storage. Clean hydrogen produced with renewable electricity is a zero-emission energy carrier, but is not yet as cost- competitive as hydrogen produced from natural gas. A number of studies show that an EU energy system having a significant proportion of hydrogen and renewable gases would be more cost- effective than one relying on extensive electrification. Research and industrial innovation in hydrogen applications is an EU priority and receives substantial EU funding through the research framework programmes. Hydrogen projects are managed by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU), a public-private partnership supported by the European Commission. The EU hydrogen strategy, adopted in July 2020, aims to accelerate the development of clean hydrogen. The European Clean Hydrogen Alliance, established at the same time, is a forum bringing together industry, public authorities and civil society, to coordinate investment. Almost all EU Member States recognise the important role of hydrogen in their national energy and climate plans for the 2021-2030 period. About half have explicit hydrogen-related objectives, focussed primarily on transport and industry. The Council adopted conclusions on the EU hydrogen market in December 2020, with a focus on renewable hydrogen for decarbonisation, recovery and competitiveness. In the European Parliament, the Committee on Industry, Research and Energy (ITRE) adopted an own-initiative report on the EU hydrogen strategy in March 2021.
    [Show full text]
  • Hydrogen: the Future of Energy
    Rocky Mountain Institute Quest for Solutions (RMIQ) Public Lecture Given Institute, Aspen, Colorado, 6 August 2003 Hydrogen: The Future of Energy Amory B. Lovins Chief Executive Officer Chairman of the Board Rocky Mountain Institute Hypercar, Inc. www .r mi.org www .hypercar.com ablovins@r mi.org Copyright © 2003 Rocky Mountain Institute. All rights reserved. Hypercar® is a registered trademark of Hypercar, Inc. Why is hydrogen so important? ◊ New, highly versatile energy carrier ◊ Cleaner, safer and cheaper fuel choice ◊ When combined with super-efficient fuel cell vehicles, enables a profitable transition from oil — profitable even for oil companies ◊ In a hydrogen economy, U.S. energy needs can be met from North American energy sources (including local ones), providing real security ◊ Hydrogen can accelerate renewable energy sources, which also have stable prices ◊ Hydrogen-ready vehicles can revitalize Detroit The hydrogen cacophony (see “Twenty Hydrogen Myths,” www.rmi.org) ◊ Rapidly growing interest due to climate and security concerns ◊ Unfamiliar terms and concepts, many disciplines ◊ Speculation: winners, losers, hidden agendas? Reinforce dominant incumbents, displace, or diversify? Foolishness, panacea, or misleading and double-edged? ◊ Debate is overlaid on rancorous old debates Oil, nuclear, renewables, climate, big business, right/left,… ◊ Unexpected realignments, strange bedfellows Environmentalists: If President Bush, oil companies, and the nuclear industry like it, it must be bad Wall St. J. editorial: If enviros like
    [Show full text]
  • Analysis of Ultimate Energy Consumption by Sector in Islamic Republic of Iran
    3rd IASME/WSEAS Int. Conf. on Energy & Environment, University of Cambridge, UK, February 23-25, 2008 Analysis of Ultimate Energy Consumption by Sector in Islamic Republic of Iran B. FARAHMANDPOUR∗, I. NASSERI, H. HOURI JAFARI Energy Management Department Institute for International Energy Studies (IIES), subsidiary of Ministry of Oil & Gas No.14, Sayeh Street, Valiy-e-Asr Street, Tehran I.R.IRAN Abstract: Total ultimate energy consumption in Iran was 1033.32 MBOE in 2006, and increased at an average annual rate of 6% in 1996-2006. Household and commercial sector has been the main consumer sector (418.47 MBOE) and the fastest-growing sector (7.2%) that followed by transport (264.65 MBOE; 7%), industry (238.86 MBOE; 5.3%) and Agriculture (37.39 MBOE; 2.1%). Iran’s ultimate energy consumption pattern over the last decades is inefficient and contributes towards the excessive consumption of fossil fuels which produces several quantities of pollutants and green house gases. Low price of energy and high subsidies represent an effective incentive for inefficient energy consumption pattern and accelerate energy consumption and environmental pollutions. The present paper provides a detailed analysis of the ultimate energy consumption in Iran by sectors during the last 10 years. We conclude that energy conservation policies by sectors are necessary in Iran and also the paper includes several suggestions for each sector to reduce energy consumption. Key-Words: Iran, Energy Consumption, Transportation Sector, Residential and Commercial Sector, Industrial Sector, Agricultural Sector, Energy Audits. 1 Introduction empirical results imply that such policies would not The process of economic development in the impede economic growth in the long term.
    [Show full text]