Rhynchophorus Palmarum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oenocarpus Bataua Mart.): a Palm from the Amazon
International Journal of Plant & Soil Science 31(6): 1-7, 2019; Article no.IJPSS.54389 ISSN: 2320-7035 Mineralogical Composition and Bioactive Molecules in the Pulp and Seed of Patauá (Oenocarpus bataua Mart.): A Palm from the Amazon S. A. M. Saravia1*, I. F. Montero2, B. M. Linhares3, R. A. Santos4 and J. A. F. Marcia5 1Faculty of Earth Sciences and Conservation, National University of Agriculture, Highway to Dulce Nombre de Culmi, Km 215, Neighborhood El Espino, Catacamas-Olancho, Honduras. 2Department of Organic and Inorganic Chemistry, Polytechnic School, University of Extremadura, University Avenue s/n, Cáceres, Spain. 3Federal Institute of Roraima, Campus Boa Vista, Av. Glaycon de Paiva, 2496 - Pricumã, Boa Vista - RR, 69303-340, Brazil. 4Department of Food Science, Louisiana State University, USA. 5Faculty of Technological Sciences, National University of Agriculture, Highway to Dulce Nombre de Culmi, Km 215, Neighborhood El Espino, Catacamas-Olancho, Honduras. Authors’ contributions This work was carried out in collaboration among all authors. Author SAMS contributed to the analysis, literature review and formatting of the article. Author IFM contributed to the supervision of the analysis, writing of the article and review of language and style. Author BML contributed to the collection of the material, sample preparation and analysis. Authors RAS and JAFM contributed to the review, editing of the article, the verification, validation of the methods and analysis being used in the experiments. All authors read and approved the final manuscript. Article Information DOI: 10.9734/IJPSS/2019/v31i630228 Editor(s): (1) Dr. Olanrewaju Folusho Olotuah, Professor, Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria. -
The Role of Component Ratio Integrity in Host-Plant Selection: a Chemical and Biological Approach
University College, London THE ROLE OF COMPONENT RATIO INTEGRITY IN HOST-PLANT SELECTION: A CHEMICAL AND BIOLOGICAL APPROACH. By Sarah Rachael Graves Rothamsted Supervisor* Professor John A. Pickett University College supervisor* Professor Michael H. Abraham CASE (AgriSense) Supervisor: Dr. Owen T. Jones A thesis submitted in partial fulfilment of the requirements of the University College, London for the Degree of Doctor of Philosophy. 2003 Worked carried out in the Biological Chemistry Division of Rothamsted Research (formerly lACR'Rothamsted), Harpenden, Hertfordshire AL5 2JQ. ProQuest Number: U643202 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643202 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract The role of ratio integrity between volatile semiochemicals (behaviour modifying chemicals) in host plant selection was investigated using the pea and bean weevil, Sitona lineatush., as the model insect. The quantification of the attraction of S. lineatus to traps baited with modified ratios of host ( Vicia fabâ) semiochemicals together with synthetic aggregation pheromone was evaluated statistically. The bait mixture contained 3 hexen l ol, 3 hexenyl acetate, 1 octen 3 ol, 2- phenylethanol, beta caryophyllene, benzyl alcohol, alpha terpineol, hexanal, linalool plus the pheromone, 4 methyl 3,5 heptanedione. -
Behavior and Ecology of the White-Footed Tamarin (Saguinus Leucopus) in a Fragmented Landscape of Colombia
Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (2): 788-808, 2016 Research Article Behavior and ecology of the white-footed tamarin (Saguinus leucopus) in a fragmented landscape of Colombia: small bodied primates and seed dispersal in Neotropical forests A. Gabriela de Luna1, 2,*, Yesenia García-Morera1, 3 and Andrés Link1, 4, 5 1Fundación Proyecto Primates 2Departamento de Zoología y Antropología, Facultad de Biología, Universidad Complutense, España 3Instituto de Biología, Universidad de Antioquia, Colombia 4Departamento de Ciencias Biológicas, Universidad de los Andes, Colombia 5Facultad de Administración, Universidad de los Andes, Colombia *Corresponding author. Email: [email protected] Abstract Tamarins are small-bodied Neotropical primates that mainly feed on ripe fruits and insects, and supplement their diet with plant exudates, nectar, fungi and vertebrate prey. They are important seed dispersers in Neotropical forests as they are able to disperse a large number of small and me- dium-sized seeds from parental trees. In this paper, we describe the diet of the white-footed tama- rin (Saguinus leucopus) and its role as seed disperser in a fragmented landscape in Colombia. During a twelve month period, we collected data on activity patterns, ranging behavior and feeding ecol- ogy, as well as on habitat-wide forest productivity. S. leucopus fed from >95 plant species and spent 17% of their time feeding. We found a positive relationship between fruit consumption and ripe- fruit availability. Dietary diversity increased during periods of fruit scarcity, when the tamarins fed more on insects and exudates. During periods of fruit scarcity, they relied more heavily on the bor- ders of forest fragments and made occasional incursions into adjacent fragments across a matrix of pastures. -
Genetic Diversity of Dispersed Seeds Is Highly Variable Among Leks of the T Long-Wattled Umbrellabird
Acta Oecologica 86 (2018) 31–37 Contents lists available at ScienceDirect Acta Oecologica journal homepage: www.elsevier.com/locate/actoec Genetic diversity of dispersed seeds is highly variable among leks of the T long-wattled umbrellabird ∗ Kym Ottewella,c, Luke Brownea,b,d, Domingo Cabrerab, Jorge Olivob, Jordan Karubiana,b, a Department of Ecology and Evolutionary Biology, Tulane University, 400 Lindy Boggs Building, New Orleans, LA 70118, USA b Fundación para la Conservación de los Andes Tropicales, Mariano Hurtado N 50-89 y Vicente Herida, Quito, Ecuador c Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Avenue, Kensington, Western Australia 6158, Australia d UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, Los Angeles, CA 90095, USA ARTICLE INFO ABSTRACT Keywords: Frugivorous animals frequently generate clumped distributions of seeds away from source trees, but genetic Alpha, beta, delta and gamma diversity consequences of this phenomenon remain poorly resolved. Seed dispersal of the palm Oenocarpus bataua by long- Allelic diversity wattled umbrellabirds Cephalopterus penduliger generates high seed densities in leks (i.e., multi-male display fl Gene ow sites), providing a suitable venue to investigate how dispersal by this frugivore may influence seed source di- Heterozygosity versity and genetic structure at local and landscape levels. We found moderate levels of maternal seed source Central place foraging diversity in primary seed rain across five leks in northwest Ecuador (unweighted mean alpha diversity α = 9.52, Seed dispersal α α – Ecuador weighted mean r = 3.52), with considerable variation among leks ( r range: 1.81 24.55). -
Giant Palm Weevils of the Genus Rhynchophorus (Coleoptera: Curculionidae) and Their Threat to Florida Palms
DACS-P-01719 Pest Alert created 18-February-2010 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Adam H. Putnam, Commissioner of Agriculture Giant Palm Weevils of the Genus Rhynchophorus (Coleoptera: Curculionidae) and Their Threat to Florida Palms Michael C. Thomas, Taxonomic Entomologist, Florida Department of Agriculture and Consumer Services, Division of Plant Industry INTRODUCTION: The giant palm weevils of the genus Rhynchophorus Herbst are among the worst palm pests in the world. One species, Rhynchophorus cruentatus (Fabricius), is native to Florida and the southeastern US. Two other species, Rhynchophorus ferrugineus (Olivier) and Rhynchophorus palmarum (L.), are found in the New World and are considered to be threats to palms in Florida. Of particular concern is R. ferrugineus, known as the red palm weevil. It is a pest of coconut and other palms in its native range. Over the past three decades, its range has expanded into the Middle East, North Africa and Mediterranean Europe. It attacks many palm species, but is especially devastating on date palms. It recently became established in Curaçao in the Caribbean, placing it ever closer to Florida. In each case, it is suspected that the weevils travelled with imported palms. In January 2010, the federal government prohibited the importation into the United States of live palms belonging to 17 genera. IDENTIFICATION: Identification of adult palm weevils is straightforward as they are the largest weevils in NorthAmerica, ranging from about 1 to 1.8 inches (25mm to 45mm) in length. The individual species are rather similar, but the three species under consideration can be distinguished by the following key: 1. -
Feeding and Behavioral Activities As an Oil Palm Defoliator Author(S): Luis C
Leucothyreus femoratus (Coleoptera: Scarabaeidae): Feeding and Behavioral Activities as an Oil Palm Defoliator Author(s): Luis C. Martínez, Angelica Plata-Rueda, José C. Zanuncio and José E. Serrao Source: Florida Entomologist, 96(1):55-63. Published By: Florida Entomological Society https://doi.org/10.1653/024.096.0107 URL: http://www.bioone.org/doi/full/10.1653/024.096.0107 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Martínez et al.: Leucothyreus femoratus Defoliates Oil Palm 55 LEUCOTHYREUS FEMORATUS (COLEOPTERA: SCARABAEIDAE): FEEDING AND BEHAVIORAL ACTIVITIES AS AN OIL PALM DEFOLIATOR LUIS C. MARTÍNEZ1,*, ANGELICA PLATA-RUEDA2, JOSÉ C. ZANUNCIO1 -
The Oil Palm Grower's Handbook
Human Planting Soil Material Timing Water Other Tools Plants Light 2 Human Planting Soil Material Timing Water Other Tools Plants Light 3 4 Introduction What drives life is a little electric current, kept up by the sunshine. Albert SZENT-GYÖRGYI, Nobel prize for medicine 1937 5 Over its lifetime, oil palm is one of the crops that generates most current" per unit area, from photosynthesis to oil: 5 to 10 times more oil per hectare than any other oil crop. This energy, in oil form, offers high nutritional value (vitamins, antioxidants, oleic fraction) and technological qualities (the naturally solid fraction is of interest to the agrifood industry). The photosynthetic efficiency of the oil palm cannot be achieved without humans, who are ten times more numerous per unit area than for the production of soybean oil: an “oil palm” project is therefore first and foremost a human project, a job generating project, a project that is demanding in both skills and work quality, a project combining the sun, land and people. These people are actively committed to producing seeds, managing prenurseries, nurseries and plantations, ensuring their upkeep and harvesting them... Their work is well rewarded, even on difficult soils. Water is the “switch”, and even the combustion agent, since every mm of rainfall gained over the water deficit generates much more than a linear response. Solar radiation feeds flow intensity, temperature modulates it. Production is organized in a given space that obviously needs to be preserved, or even enhanced – even more over the long term (oil palm works well for those who persevere best, and rewards them most generously). -
PHENOLOGY, BIOMETRICS and FRUITS PRODUCTION of Attalea
Facultad de Ciencias ACTA BIOLÓGICA COLOMBIANA Departamento de Biología http://www.revistas.unal.edu.co/index.php/actabiol Sede Bogotá ARTÍCULO DE INVESTIGACIÓN / RESEARCH ARTICLE BOTÁNICA PHENOLOGY, BIOMETRICS AND FRUITS PRODUCTION OF Attalea nucifera (ARECACEAE) IN COLOMBIA FENOLOGÍA, PARÁMETROS BIOMÉTRICOS Y PRODUCTIVIDAD DE FRUTOS DE Attalea nucifera (ARECACEAE) EN COLOMBIA Ivón Jiménez-Morera1 , Néstor García1 1Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 – 62, Bogotá, Colombia *For correspondence: [email protected] Received: 06th February 2019, Returned for revision: 03rd May 2019, Accepted: 28th May 2019. Associate Editor: Xavier Marquínez-Casas. Citation/Citar este artículo como: Jiménez-Morera I, García N. Phenology, biometrics and fruits production of Attalea nucifera (Arecaceae) in Colombia. Acta biol. Colomb. 2020;25(1):104-111. DOI: http://dx.doi.org/10.15446/abc.v25n1.77701 ABSTRACT Attalea nucifera is a threatened palm endemic to the Magdalena River basin in Colombia. In the past its seeds were consumed by the inhabitants of the town of Guaduas, Cundinamarca, although currently its use is less frequent. To assess the productive potential of this palm, we studied its phenology, biometric parameters, and fruit productivity in a forest relict in Guaduas. Field work was carried out between April 2016 and March 2017. The reproductive cycle of this species lasted approximately 12 and a half months from bud to fruit ripening. Although bud production occurred throughout the year, it increased during periods of greatest rainfall. Flowering peaks occurred towards the end of the rainy season and fruits ripened towards the period of low rainfall. We found a positive correlation between the number of leaves in the crown and the production of reproductive structures (rs = 0.447, p = 0.004). -
Oenocarpus Bataua
ISSN 0101-2061 Ciência e Tecnologia de Alimentos Original Nutritional composition, fatty acid and tocopherol contents of buriti (Mauritia flexuosa) and patawa (Oenocarpus bataua) fruit pulp from the Amazon region Composição centesimal, em ácidos graxos e tocoferóis das polpas amazônicas de buriti (Mauritia flexuosa) e de patauá (Oenocarpus bataua) Sylvain Henri DARNET1, Luiza Helena Meller da SILVA2*, Antonio Manoel da Cruz RODRIGUES2, Roseana Telles LINS2 Abstract Buriti and patawa are two endemic palm trees from the Amazon region. Their pulps are traditionally consumed by the local population, but are underused and lesser known worldwide. Nutritional composition, fatty acid and tocopherol contents of the two palm pulps were determined by modern analytical methods: Gas Chromatography (CG) and High Performance Liquid Chromatography (HPLC), based on the standards of AOCS (AMERICAN..., 2002) and AOAC (ASSOCIATION..., 1997), respectively. Buriti and patawa fruit pulps are highly nutritive, with respectively, high fat content (38.4% and 29.1% of dry matter (DM)), protein content (7.6% and 7.4% of DM) and dietary fibers (46% and 44.7% of DM). Buriti pulp can be considered healthy food due its high content of vitamin E (1169 µg.g–1 DM). Patawa pulp is highly oleaginous and its fatty acid composition is very similar to the ones of healthy oils, such as olive oil. Keywords: Amazon; pulp; fruit; palm; buriti; Mauritia flexuosa; patawa; Oenocarpus bataua; lipids; fatty acids; tocopherols. Resumo O buriti e o patauá são duas palmeiras endêmicas da região Amazônica. As polpas destes frutos são tradicionalmente consumidas pela população local, mas ainda não ganharam os mercados nacional e internacional. -
Bud Rot and Other Major Diseases of Coconut, a Potential Threat to Oil Palm
1 Bud rot and other major diseases of coconut, a potential threat to oil palm Dollet Michel1, Hubert de Franqueville2 Michel Ducamp1 1CIRAD, TA A-98/F, Campus International de Baillarguet, 34398 Montpellier Cedex 5 2PalmElit - Parc Agropolis Bat.14 - 2214 Bd de la Lironde, 34980 Montferrier sur Lez INTRODUCTION Since the last quarter of the 20th century, it has had to be accepted that any pathogen can move from one continent to another, in a very short time, and affect any place on the planet. The best-known examples are animal and/or human pathogens. Reference will briefly be made to them as they are very concrete examples of the current epidemic context. However, this also applies for the spread of plant diseases that we have been witness to in the last thirty years. Not only do pathogens travel over long distances, they also “jump hosts”, be it in the Animal Kingdom or the Plant Kingdom. Climate changes may be conducive to such events. Using these data, we shall attempt to examine the possible risks of seeing pathogens of the coconut palm, Cocos nucifera, or even of other plants, attacking the oil palm, Elaeis guineensis. DISPERSAL/PROPAGATION OF ANIMAL AND HUMAN PATHOGENS Sars The first example involves SARS (Severe Acute Respiratory Syndrome) which was identified in humans in China at the end of 2002. At the beginning of 2003, a hotel in Hong Kong very close to the original focus was the starting point for an epidemic that affected Vietnam, Singapore and even Toronto in Canada within a few weeks. -
Amazon Plant List
Amazon Plant List The Plant list below is contributed by Dr.Christopher Dick, PhD who has worked in Amazonia for many years. Note that it is a working list and neither exhaustive nor complete. English Common Portuguese Common Plant Family Name Botanical Name Name Name Annonaceae Guatteria Envira-bobô recurvisepala Unonopsis guatterioides Myristicaceae Virola calophylla Wild nutmeg Ucuuba Iryanthera uleii Dead-bark Osteophloeum Ucuuba-amarela platyspermum Lauraceae Mezilaurus itauba Itaúba Persea americana Avocado Abacate Aniba canella Casca preciosa Aniba roseadora Pau rosa Ocotea rubra Louro-gamela Peperomia Piperaceae Ant-garden macrostachya Nymphaeaceae Victoria amazonica Amazon-lily Victoria-regia Menispermaceae Ulmaceae Trema micrantha Trema, Periquitinho Moraceae Clarisia racemosa Guariúba Naucleopsis Miratinga, Pau pica caloneura Brosimim Amapá parinarioides Cecropia Cecropiaceae Purple cecropia Imbaúba roxa purpurascens Cecropia sciadophylla Cecropia Imbaúba-torém Caruru-bravo, Bredo- Phytolaccaceae Phytolacca rivinoides Pokeweed roxo Epiphyllum Cactaceae Cactus phyllanthus Polygonaceae Coccoloba spp. Water-grape? Symeria paniculata Carauaçuzeiro Tetracera Dilleniaceae Water-vine Cipó d'agua willdenowiana Pinzona coriaceae Fire-vine Cipó-de-fôgo Caryocaraceae Caryocar villosum Piquiá Caryocar glabrum Piquiarana Margraviaceae Marcgravia Quiinaceae Clusiaceae Vismia cayennensis Lacre-branco Vismia guianensis Lacre-vermelho Symphonia Ananí used for cerol? globulifera Elaeocarpaceae Sterculiaceae Sterculia frondosa Tacacá Waltheria -
Metamasius Hemipterus
Metamasius hemipterus Scientific Name Metamasius hemipterus (Linnaeus, 1758) Synonyms: Calandra sacchari Gyllenhal, 1838 Curculio hemipterus Linnaeus, 1758 Curculio rufofasciatus De Geer, 1775 Curculio variegatus Fabricius, 1787 Sphenophorus ambiguus Gyllenhal, 1838 Sphenophorus decoratus Gyllenhal, 1838 Sphenophorus hemipterus (Linnaeus, 1758) Sphenophorus inscripta Gyllenhal, 1838 Sphenophorus sacchari Gyllenhal, 1838 Sphenophorous nigerrimus Gyllenhal, 1838 Taxonomic note Metamasius hemipterus includes three subspecies: M. hemipterus carbonarius, M. hemipterus hemipterus, and M. hemipterus sericeus (Vaurie, 1966). Differences are found in the color pattern of the elytra, pronotum, or venter but not in form (Vaurie, 1966). Some of the information contained in this datasheet may refer specifically to the subspecies M. h. sericeus, which is currently found in the United States (Florida). Common Name West Indian cane weevil, rotten cane stalk borer, rotten sugarcane weevil, silky cane weevil, weevil borer, West Indian sugarcane borer Type of Pest Weevil Taxonomic Position Class: Insecta, Order: Coleoptera, Family: Dryophthoridae Reason for Inclusion in Manual Additional Pests of Concern for 2013 (as Metamasius spp.); Previously listed on the CAPS AHP Master Pest List Pest Description 1 Eggs: The egg is yellowish cream, approximately 1.7 mm (approx. /16 in) long, ovoid and semitransparent (CABI, 2012). 1 3 Larvae: The larva is white and robust with a width of 3.2 to 4.5 mm (approx. /8 to /16 in). Thoracic and abdominal sclerites are yellow in color while the head is brown with 9 11 paler stripes on the dorsal side. Body length is 15 to 17 mm (approx. /16 to /16 in). Last updated: September 13, 2013 1 Three dorsal folds are present on the abdominal segments while the 9th abdominal segment is either smoothly rounded or transverse.