The Oldest Brachyura (Decapoda: Homolodromioidea: Glaessneropsoidea) Known to Date (Jurassic)

Total Page:16

File Type:pdf, Size:1020Kb

The Oldest Brachyura (Decapoda: Homolodromioidea: Glaessneropsoidea) Known to Date (Jurassic) JOURNAL OF CRUSTACEAN BIOLOGY, 30(2): 251-256, 2010 THE OLDEST BRACHYURA (DECAPODA: HOMOLODROMIOIDEA: GLAESSNEROPSOIDEA) KNOWN TO DATE (JURASSIC) Carrie E. Schweitzer and Rodney M. Feldmann (CES, [email protected]) Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720; (RMF, [email protected]) Department of Geology, Kent State University, Kent, Ohio 44242 ABSTRACT Downloaded from https://academic.oup.com/jcb/article/30/2/251/2419233 by guest on 02 October 2021 The oldest confirmed brachyurans, referable to the Homolodromioidea and Glaessneropsoidea, are Early to Middle Jurassic in age. Geographically, all of the occurrences are in Europe, with one exception, in Tanzania. KEY WORDS: Brachyura, Decapoda, Homolodromioidea, Jurassic, origins DOI: 10.1651/09-3231.1 INTRODUCTION tidae Beurlen, 1932; Prosopidae Von Meyer, 1860; The search for the oldest brachyuran has had many false starts. Tanidromitidae Schweitzer and Feldmann, 2008 [imprint As better and more complete diagnoses for the various 2007]. anomuran and brachyuran groups have become available, and as more fossils and more complete fossils are known, it has Homolodromioidea incertae sedis become possible to determine which organisms belong within Eoprosopon Fo¨rster, 1986 Brachyura and which are most likely anomurans or some other type of decapod. Recent workers have removed several Type and Sole Species.—Eoprosopon klugi Fo¨rster, 1986, candidates for the oldest brachyuran from the group (Schweitzer by monotypy. and Feldmann, 2005; Feldmann and Schweitzer, 2010). Herein we report on the oldest confirmed members of Brachyura, those occurrences that fit the definition of Brachyura without doubt. Eoprosopon klugi Fo¨rster, 1986 Krobicki and Zaton´ (2008) provided an overview of the Fig. 1 Jurassic roots of crabs, but that work did not take into account recent advances in the systematics and phylogeny Material Examined.—Cast of BSP 1986 I 19, holotype. of these animals. An important implication for our findings Discussion.—Fo¨rster (1986) described Eoprosopon from is that it permits the constraint of molecular studies of the Pliensbachian of Germany. He referred it to Prosopidae, Brachyura and other decapod taxa, with an earliest possible and Guinot (1995) later removed it to Homolodromiidae divergence time based upon actual evidence for these based upon its possession of a deep cervical groove, long groups. These findings also permit paleontologists to focus dactyls of pereiopods 2 and 3, reduced pereiopods 4 and 5, on an age horizon and therefore to target localities in the and a flattened pleon with epimeres. All of these features search for ancestral Decapoda within the anomuran and are present, but the nature of the pleon suggests that brachyuran lineages; these two clades are shown to be placement into Homolodromiidae is not warranted. Exam- sisters in most recent analyses (Ahyong and O’Meally, ination of the pleonites indicates the presence of discrete, 2004; Ahyong et al., 2007). Recognition of an Early to obvious swellings in the area of the epimeres (Fig. 1), Middle Jurassic origin for Brachyura can allow workers to which are not present on any extant homolodromiid. Each begin investigating the dynamics of the origin and radiation of this ecologically important group of animals. individual pleonite 5-7 is rectangular and long, they fit Institutional abbreviations: BMNH, The Natural History closely together, and they maintain their length laterally. Museum, London, UK; BSP, Bayerische Staatsammlung Pleonite 7 has clear articulating rings. The telson is slightly fu¨r Pala¨ontologie, Mu¨nchen, Germany; OUM, Geological longer than wide. In extant homolodromiids, both male and Collections, Oxford University Museum. female, the telson is very long and longer than wide, e.g., illustrations in Guinot (1995). Pleonites 5-7 are short in both males and females, and they narrow laterally into SYSTEMATICS triangular tips. Weak articulating rings may be present if Infraorder Brachyura Linnaeus, 1758 present at all. Section Dromiacea De Haan, 1833 Thus, the pleon of Eoprosopon is unlike that of Superfamily Homolodromioidea Alcock, 1900 Homolodromiidae. However, the features of Eoprosopon seem to suggest clearly that it is a brachyuran. It possesses Included Families.—Homolodromiidae Alcock, 1900; Buc- one pair of chelae; the walking legs are long and achelate; culentidae Schweitzer and Feldmann, 2009a; Goniodromi- the last pair of pereiopods and possibly the fourth pair also 251 252 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 30, NO. 2, 2010 Downloaded from https://academic.oup.com/jcb/article/30/2/251/2419233 by guest on 02 October 2021 Fig. 1. Eoprosopon klugi Fo¨rster, 1986, cast of BSP 1986 I 19, holotype. Scale bar 5 1 cm. are reduced; the dorsal carapace has well-developed long lateral rostral spines and downturned central rostral regions and cervical and branchiocardiac grooves; and the spine; augenrests large, directed forward, protected by three carapace is dorsoventrally compressed. The pleon extends spines; dorsal carapace ornamented by long spines; cervical posteriorly from the carapace, and does have epimeres, groove deep, nearly straight; mesogastric region well- both of which are atypical of the brachyurans. However, ornamented by spines and muscle scars. these features are seen in the extant homolodromiids. Thus, Eoprosopon is the earliest known specimen that can be Discussion.—Eudes-Deslongschamps (1835) named the referred to Brachyura with reasonable confidence, probably genus and its type and sole species in 1835. In 1865, best referred to the Homolodromioidea incertae sedis. Woodward and Salter referred a species to Protocarcinus, Examination of the type specimen, perhaps with some P. longipes, and then later Woodward (1866) placed that additional preparation, or recovery of more material might species within the new genus Palaeinachus. He did not use permit referral of the specimen to a family with confidence. the name Protocarcinus because: 1) the specimen in his To date, the appendages and pleon of the Jurassic opinion bore no relation to Carcinus,and2)‘‘the prefix homolodromioids are unknown. Garassino et al. (2005) ‘Proto’ is objectionable in Palaeontology’’ (Woodward, 1866, had referred a specimen with preserved appendages to p. 493). Examination of specimens in the Natural History Pithonoton sp.; however, Feldmann et al. (2006) have Museum, London, suggests that Homolus auduini and already suggested that it is probably a porcellanid. Palaeinachus longipes are synonymous as suggested by Unfortunately, Eoprosopon lacks well-preserved front and Glaessner (1929) and Guinot (1995). The two species (H. lateral views that could permit determination of the auduini and P. longipes) appear to be conspecific based upon possession of three large nodes on the anterior half of presence and size of augenrests or orbital structures carapace (one on anterior extension of mesogastric, and one necessary to place it within a family. each on protogastric), a pair of nodes on the posterior end of the mesogastric region, a straight path of the cervical groove, Homolodromiidae Alcock, 1900 and possession of pseudorostral spines. All three generic Homolus Eudes-Deslongschamps, 1835 names are available according to Nomenclator Zoologicus. However, Homolus is the earlier name, was fully described Protocarcinus Woodward and Salter, 1865, fig. 15. and illustrated, and was designated with an associated Palaeinachus Woodward, 1866, p. 493, pl. 24, fig. 1. species; therefore, we use it here. Wehner (1988) referred Type and Sole Species.—Homolus auduini Eudes-Deslong- the species to Foersteria, but that name has been replaced by champs, 1835, by monotypy. Gabriella Collins et al., 2005, and the species is not referable to that genus (Schweitzer and Feldmann, 2009b). Diagnosis.—Carapace longer than wide, widest about 70% Homolus is referable to Homolodromiidae based upon the distance posteriorly in branchial region; rostrum with possession of large, forward-directed augenrests protected SCHWEITZER AND FELDMANN: THE OLDEST CRABS 253 by spines; lateral rostral spines that are very long and a International Code of Zoological Nomenclature (1999: downturned central rostral spine; a forward-directed outer- Articles 11 and 12), the name does appear to be available. orbital spine; a well-defined branchiocardiac and a All of the species referred to it were originally referred to moderately defined postcervical groove; an inflated sub- other genera, and they have usually been treated as hepatic region; a well-defined, straight cervical groove; belonging to the genus to which they were originally lateral margins that are subparallel and diverge posteriorly; referred in generic revisions, especially because Van relatively short first pereiopods; a dorsal carapace that has Straelen did not designate a type species. Thus, most of high flanks that become markedly narrower posteriorly, the species referred to Avihomola have since been referred possibly indicating a poorly calcified posterior portion; and to other genera. The remaining species that Van Straelen an abdomen that is partially visible in dorsal view. In fact, referred to Avihomola are known from poor, incomplete Homolus is remarkably similar to extant homolodromiids. material. At this time, it appears, therefore, that Avihomola Bouvier (1896) had already noted this remarkable similar- is a nomen nudum. ity. No other decapod family exhibits this combination of Beurlen (1932) reported Early Jurassic
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • A Revision of the Palaeocorystoidea and the Phylogeny of Raninoidian Crabs (Crustacea, Decapoda, Brachyura, Podotremata)
    Zootaxa 3215: 1–216 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 3215 A revision of the Palaeocorystoidea and the phylogeny of raninoidian crabs (Crustacea, Decapoda, Brachyura, Podotremata) BARRY W.M. VAN BAKEL1, 6, DANIÈLE GUINOT2, PEDRO ARTAL3, RENÉ H.B. FRAAIJE4 & JOHN W.M. JAGT5 1 Oertijdmuseum De Groene Poort, Bosscheweg 80, NL–5283 WB Boxtel, the Netherlands; and Nederlands Centrum voor Biodiver- siteit [Naturalis], P.O. Box 9517, NL–2300 RA Leiden, the Netherlands E-mail: [email protected] 2 Département Milieux et peuplements aquatiques, Muséum national d'Histoire naturelle, 61 rue Buffon, CP 53, F–75231 Paris Cedex 5, France E-mail: [email protected] 3 Museo Geológico del Seminario de Barcelona, Diputación 231, E–08007 Barcelona, Spain E-mail: [email protected] 4 Oertijdmuseum De Groene Poort, Bosscheweg 80, NL–5283 WB Boxtel, the Netherlands E-mail: [email protected] 5 Natuurhistorisch Museum Maastricht, de Bosquetplein 6–7, NL–6211 KJ Maastricht, the Netherlands E-mail: [email protected] 6 Corresponding author Magnolia Press Auckland, New Zealand Accepted by P. Castro: 2 Dec. 2011; published: 29 Feb. 2012 BARRY W.M. VAN BAKEL, DANIÈLE GUINOT, PEDRO ARTAL, RENÉ H.B. FRAAIJE & JOHN W.M. JAGT A revision of the Palaeocorystoidea and the phylogeny of raninoidian crabs (Crustacea, Deca- poda, Brachyura, Podotremata) (Zootaxa 3215) 216 pp.; 30 cm. 29 Feb. 2012 ISBN 978-1-86977-873-6 (paperback) ISBN 978-1-86977-874-3 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O.
    [Show full text]
  • Crustacea, Decapoda, Brachyura) Danièle Guinot
    New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura) Danièle Guinot To cite this version: Danièle Guinot. New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura). Geodiversitas, Museum National d’Histoire Naturelle Paris, 2019, 41 (1), pp.747. 10.5252/geodiversitas2019v41a22. hal-02408863 HAL Id: hal-02408863 https://hal.sorbonne-universite.fr/hal-02408863 Submitted on 13 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Changer fig. 19 initiale Inverser les figs 15-16 New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura) Danièle GUINOT ISYEB (CNRS, MNHN, EPHE, Sorbonne Université), Institut Systématique Évolution Biodiversité, Muséum national d’Histoire naturelle, case postale 53, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] An epistemological obstacle will encrust any knowledge that is not questioned. Intellectual habits that were once useful and healthy can, in the long run, hamper research Gaston Bachelard, The Formation of the Scientific
    [Show full text]
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Factors Affecting Growth of the Spiny Lobsters Panulirus Gracilis and Panulirus Inflatus (Decapoda: Palinuridae) in Guerrero, México
    Rev. Biol. Trop. 51(1): 165-174, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Factors affecting growth of the spiny lobsters Panulirus gracilis and Panulirus inflatus (Decapoda: Palinuridae) in Guerrero, México Patricia Briones-Fourzán and Enrique Lozano-Álvarez Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos. P. O. Box 1152, Cancún, Q. R. 77500 México. Fax: +52 (998) 871-0138; [email protected] Received 00-XX-2002. Corrected 00-XX-2002. Accepted 00-XX-2002. Abstract: The effects of sex, injuries, season and site on the growth of the spiny lobsters Panulirus gracilis, and P. inflatus, were studied through mark-recapture techniques in two sites with different ecological characteristics on the coast of Guerrero, México. Panulirus gracilis occurred in both sites, whereas P. inflatus occurred only in one site. All recaptured individuals were adults. Both species had similar intermolt periods, but P. gracilis had significantly higher growth rates (mm carapace length week-1) than P. inflatus as a result of a larger molt incre- ment. Growth rates of males were higher than those of females in both species owing to larger molt increments and shorter intermolt periods in males. Injuries had no effect on growth rates in either species. Individuals of P. gracilis grew faster in site 1 than in site 2. Therefore, the effect of season on growth of P. gracilis was analyzed separately in each site. In site 2, growth rates of P. gracilis were similar in summer and in winter, whereas in site 1 both species had higher growth rates in winter than in summer.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
    Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994).
    [Show full text]
  • Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
    Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group.
    [Show full text]
  • (Campanian) of the Moyenne Moulouya, Northeast Morocco
    Revista Mexicana de CienciasNew Geológicas, crabs from v. 27,the núm.Upper 2, Cretaceous 2010, p. 213-224 of the Moyenne Moulouya, Morocco 213 New crabs (Crustacea, Decapoda) from the Upper Cretaceous (Campanian) of the Moyenne Moulouya, northeast Morocco Àlex Ossó-Morales1, Pedro Artal2, and Francisco J. Vega3,* 1 Josep Vicenç Foix, 12-H, 1er-1ª 43007 Tarragona, Catalonia, Spain, 2 Museo Geológico del Seminario de Barcelona, Diputación 231, E-08007 Barcelona, Spain. 3 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, 04510, México D. F., Mexico. * [email protected] ABSTRACT The presence of the genera Costacopluma and Ophthalmoplax in Upper Cretaceous (Campanian) Moroccan strata is documented on the basis of specimens collected from the Calcaires à slumps de Taghit Formation, Moyenne Moulouya (Morocco). Two new species are described, Ophthalmoplax minimus and Costacopluma maroccana. The first record for Opthalmoplax in the west Tethyan realm is reported, and systematic affinities of this genus and its species are discussed. An absolute age of the late Campanian was obtained for this assemblage from 87Sr/86Sr analysis applied to well preserved cuticle calcitic remains of Ophthalmoplax minimus. Costacopluma maroccana represents the 14th species for this genus and the fourth Cretaceous species. Its morphology reinforces hypothesis of two main phyletic groups for this genus. Key words: Crustacea, Decapoda, Ophthalmoplax, Costacopluma, Campanian, Morocco. RESUMEN Se documenta la presencia de los géneros Ophthalmoplax y Costacopluma con base en especímenes recolectados en sedimentos del Cretácico Superior (Campaniano) de la Moyenne Mouluya (Marruecos). Se describen dos nuevas especies: Ophthalmoplax minimus y Costacopluma maroccana. Se identifíca y localiza (por primera vez en la parte occidental del dominio del Tethys) el género Ophthalmoplax, discutiéndose las afinidades sistemáticas de este género y sus especies.
    [Show full text]
  • Decapode.Pdf
    We are pleased and honored to welcome at the Paléospace Museum of Villers-sur-Mer the “6th Symposium on Mesozoic and Cenozoic Decapod Crustaceans”. Villers-sur-Mer is a place universally known by specialists and amateurs of palaeontology due to its famous Vaches Noires cliffs. Villers-sur-Mer has also the distinction of being the only French seaside resort located on the Greenwich Meridian line. The Paléospace is a Museum funded in 2011 with the label Musée de France. Three main animations linked to the Time are presented: palaeontology, astronomy and nature with the neighbouring marsh. The museum is in a constant evolution. For instance, an exhibition specially dedicated to dinosaurs was opened two years ago and a planetarium will open next summer. Every year a very high quality temporary exhibition takes place during the summer period with very numerous animations during all the year. The Paléospace does not stop progressing in term of visitors (56 868 in 2015) and its notoriety is universally recognized both by the other museums as by the scientific community. We are very proud of these unexpected results. We thank the dynamism and the professionalism of the Paléospace team which is at the origin of this very great success. We wish you a very good stay at Villers-sur-Mer, a beautiful visit of the Paléospace and especially an excellent congress. Jean-Paul Durand, Mayor and President of Paléospace MOT DU MAIRE DE VILLERS-SUR-MER Nous sommes très heureux et très honorés d’accueillir à Villers-sur-Mer, le « 6e Symposium on Mesozoic and Cenozoic Decapod Crustaceans » dans le cadre du Paléospace.
    [Show full text]
  • Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an Assessment of Macaronesian and Cape Verde Biogeographic Marine Ecoregions
    Zootaxa 4413 (3): 401–448 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4413.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:2DF9255A-7C42-42DA-9F48-2BAA6DCEED7E Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an assessment of Macaronesian and Cape Verde biogeographic marine ecoregions JOSÉ A. GONZÁLEZ University of Las Palmas de Gran Canaria, i-UNAT, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: [email protected]. ORCID iD: 0000-0001-8584-6731. Abstract The complete list of Canarian marine decapods (last update by González & Quiles 2003, popular book) currently com- prises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde ar- chipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gath- ering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; diver- gent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • The Marbled Crayfish (Decapoda: Cambaridae) Represents an Independent New Species
    Zootaxa 4363 (4): 544–552 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4363.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:179512DA-1943-4F8E-931B-4D14D2EF91D2 The marbled crayfish (Decapoda: Cambaridae) represents an independent new species FRANK LYKO 1Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany Correspondence: Deutsches Krebsforschungszentrum Im Neuenheimer Feld 580 69120 Heidelberg, Germany phone: +49-6221-423800 fax: +49-6221-423802 E-mail: [email protected] Abstract Marbled crayfish are a globally expanding population of parthenogenetically reproducing freshwater decapods. They are closely related to the sexually reproducing slough crayfish, Procambarus fallax, which is native to the southeastern United States. Previous studies have shown that marbled crayfish are morphologically very similar to P. fallax. However, different fitness traits, reproductive incompatibility and substantial genetic differences suggest that the marbled crayfish should be considered an independent species. This article provides its formal description and scientific name, Procambarus virgin- alis sp. nov. Key words: parthenogenesis, annulus ventralis, genetic analysis, mitochondrial DNA Introduction Marbled crayfish were first described in 2001 as the only known obligatory parthenogen among the approximately 15,000 decapod crustaceans (Scholtz et al., 2003). The animals were first described in the German aquarium trade in the late 1990s (Scholtz et al., 2003) and became widely distributed in subsequent years under their German name "Marmorkrebs". Stable populations have developed from anthropogenic releases in various countries including Madagascar, Germany, Czech Republic, Hungary, Croatia and Ukraine (Chucholl et al., 2012; Jones et al., 2009; Kawai et al., 2009; Liptak et al., 2016; Lokkos et al., 2016; Novitsky & Son, 2016; Patoka et al., 2016).
    [Show full text]