Electron Impact Ionisation and Fragmentation of Methanol and Ethanol KL Nixon1,2*, WAD Pires1, RFC Neves1,3, HV Duque1, DB Jones4, MJ Brunger4,5 and MCA Lopes1 1 Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36936-900, Brazil 2 School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK 3 Instituto Federal do Sul de Minas Gerais, Campus Pocços de Caldas, Minas Gerais, Brazil 4 School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia 5 Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia * corresponding author:
[email protected] Abstract Electron impact ionisation and dissociative ionisation of the two smallest primary alcohols have been investigated. A quadrupole mass spectrometer was used, with an internal ionising electron source resulting in an energy resolution of ~ 0.8 eV. The partial ionisation cross sections (PICS) for a number of individual cations have been measured for energies between 10 - 100 eV. The present data compares well with previous results for methanol. Surprisingly, however, this study is the first to report individual PICS for ethanol. The sum of the present PICS for both methanol and ethanol is also compared to the total ionisation cross sections reported in the literature and are found to be in good accord. Additionally, appearance energies have been derived by fitting the Wannier equation to data measured within ~ 2 eV of the cation formation threshold. However, the low energy resolution limits the precision with which these values are able to be determined.