Effects of Pollution on Marine Organisms

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Pollution on Marine Organisms Effects of Pollution on Marine Organisms Alan J. Mearns1*, Donald J. Reish2, Philip S. Oshida3, Thomas Ginn4, Mary Ann Rempel-Hester5, Courtney Arthur6, Nicolle Rutherford1 and Rachel Pryor1 to the 2010 Deepwater Horizon oil blowout in the Gulf of ABSTRACT: This review covers selected 2014 Mexico and the 2011 Japanese tsunami. Several topical articles on the biological effects of pollutants and human areas reviewed in the past (ballast water and ocean physical disturbances on marine and estuarine plants, acidification) were dropped this year. The focus of this animals, ecosystems and habitats. The review, based review is on effects, not pollutant fate and transport. There largely on journal articles, covers field and laboratory is considerable overlap across subject areas (e.g. some measurement activities (bioaccumulation of contaminants, bioaccumulation papers may be cited in other topical field assessment surveys, toxicity testing and biomarkers) categories). Please use keyword searching of the text to as well as pollution issues of current interest including locate related but distributed papers. Use this review only endocrine disrupters, emerging contaminants, wastewater as a guide and please consult the original papers before discharges, dredging and disposal, etc. Special emphasis is citing them. placed on effects of oil spills and marine debris due in part KEYWORDS: Tissue residues, toxicity, 1* Emergency Response Division, National Oceanic and bioaccumulation, biomagnification, biomarkers, sediment Atmospheric Administration (NOAA), 7600 Sand Point Way quality, ecological risk assessment, endocrine disrupters, NE, Seattle, WA 98115; Tel.206-526-6336; email: nano particles, POPs, PCBs, PAHs, PBDEs, radionuclides, 2 [email protected]; Professor Emeritus, Department of pharmaceuticals, personal care products, trace metals, Biological Sciences, California State University, Long Beach, pesticides, biomarkers, marine biocides, oil spills, CA; 3Lives in Virginia, works at the U.S. Environmental dispersants, sewage, debris, dredging, eutrophication, Protection Agency. 4Exponent, Inc, Sedona, AZ; 5 Partner, human disturbance, Arctic, Antarctic. Aquatic Toxicology Support, Bremerton, WA.. 6Industrial doi: 10.2175/106143015X14338845156380 Economics, Inc, Cambridge, MA. We thank NOAA Librarians Brian Voss and Clara Salazar for considerable help in locating papers. 1718 Water Environment Research, Volume 87, Number 10—Copyright © 2015 Water Environment Federation Syntheses and Overviews heavy oiling and aggressive cleanup. Detailed response Understanding the effects of chronic urban recommendations are provided. contamination on the longterm productivity of anadromous Using worldwide tissue data collected as early as fish populations has been a challenge, requiring synthesis the mid-1970s, Law (2014) reviewed longterm trends of of habitat, contaminant and fish population patterns and synthetic organic chemical contamination of marine trends. Meador (2014) published a synthesis of mammals. Concentrations of organochlorine pesticides, information on multidecadal-long smolt-to-adult return PBDE’s and butyltins have been slowly decreasing but also (SAR) rates of several dozen hatchery-released Chinook appear stalled and several are still at concentrations of salmon (Oncorhynchus tshawytscha) and Coho salmon (O. considerable concern in killer whales and bottlenose kisutch) populations, comparing return rates with physical dolphins. Data is insufficient to detwermine trends for and chemical charachteristics of a wide range of urbanized perflorinated compounds, dioxans, furnans and related to rural estuaries in southern, central and northern Puget compounds. Sound, Washington (USA). The study included existing and historical data on contaminant loadings of estuariene Bioaccumulation and Biomagnification sediments, biota, and in salmon. Overall return rates of Tabular Data. Table 1 lists examples of the Chinook salmon, whose juveniles have long residence concentration of contaminants in tissues of marine plants times in their estuaries, were significantly lower than for and animals in 2014. Data are presented alphabetically by Chinook from less-contaminated rural estuaries whereas element then by organic compound and arranged by Coho salmon, whose juveniles run to sea rapidly showed no geographical area, concentration and author. Following are urban vs. less human-influenced differences in return rates. reviews of selected additional papers that report on body The author concluded that chemical contamination, marked burdens, bioaccumulation and biomagnification. by PCBs, has been a significant factor in the depressed Metals. The interspecific variations in 15 trace Chinook return rates, additive to impacts from habitat element accumulation in 26 species of green, brown and disruption and other factors. red seaweeds were measured in collections in the Aegean Michel and Rutherford (2014) conducted a Sea (Malea et al. 2014). Brown algae showed higher detailed synthesis of historical information on the impacts concentrations of arsenic and strontium than the other and recovery rates of oiled marshes marshes. The review elements. Finely branched seaweeds had higher covered 32 cases of oil spills field experiments finding that concentrations of cadmium, cobalt, copper, manganese and in most cases recovery of marsh systems occurred within vanadium than species with broad thalli. There were two growing seasons. Recovery was slowest (many species differences, for example, the brown algal species growing seasons) in marshes subject to cold climates, Cystoseira had the highest concentration of arsenic, the red 1719 Water Environment Research, Volume 87, Number 10—Copyright © 2015 Water Environment Federation species Ceramium with manganese, and the red upon the animals from the local area. A risk assessment Polysphonia and green Ulva had the highest amounts of study was conducted in a marine bay in China to determine cadmium and selenium. It was concluded by Malea et al. if butytin used in biofouling control would bioaccumulate (2014) that the structure of the species of algae was the in organisms used for food. It was found that few if any determining factor in the bioaccumulation of the element. harmful compounds would occur in humans from The red seaweed Gracilaria lemaneiformis is an important consumptions of the cultured fish (Hu et al., 2014). plant used for food and for production of pharmaceuticals. Sublethal concentrations of cadmium, lead and a Laboratory experiments were conducted to measure the combination of the two elements were measured on mussel bioaccumulations of cadmium, copper and lead (Wang, gill tissue (Poynton et al. 2014). Results of gene ontology Wang and Ke, 2014). Concentrations of copper and identified several biological processes affected including cadmium in tissues were higher when the two elements nucleotide phosphate synthesis. These responses served as were together compared to the elements alone. The results early indicators of stress which can lead to adverse indicated that bioaccumulation does occur and that physiological effects (Poynton et al., 2014). cultivation of the alga should be in clean sea water. Nanoparticles. The fate and effects of Kalantzi and associates (2014) measured the nanoparticles on a clam and polychaete were reviewed by uptake of 28 elements in polychaetes, amphipods, Mouney et al. (2014). Data were analyzed to determine decapods, molluscans and echinoderms at increasing which route of exposure influenced bioaccumulation. distances from fish farms in Greece. Fish were also Soluble nanoparticles attached to seawater molecules measured for bioaccumulation of the same elements. The which were taken up in both species. The effect of invertebrates accumulated lower amounts of most elements cadmium sulfide nanoparticles on the biochemical and than those measured in the sediments except arsenic, behavior responses to the polychaete Hediste divericolor phosphorus, sodium, cadmium and zinc. Tolerant species, was measured by Buffet et al. (2014a). Both solutions of such as most of the species of polychaetes, accumulated cadmium and cadmium nanoparticles were accumulated higher concentrations of many of the 28 elements studied by the polychaete. Behavior was measured by the number than the more sensitive species in different animals groups. of body undulations. Body movements were impaired Biomagnification of mercury was noted in fish feeding on when exposed to cadmium nanoparticles compared to benthic invertebrates in the vicinity of the fish cages. control. An experimental study with mussel, Mytilus A stable nitrogen isotope was used to document galloprovincialis, was conducted by Balbi et al. (2014) to the biomagnification pathway of mercury and selenium determine if manoparticles, as n-TiO2, and cadmium occurs in fish (Jones et al. 2014). Results indicated that together would induce measureable stress responses mercury but not selenium was taken up by fish feeding (biomarkers) without toxicity. The co-exposure of n-TiO2 1720 Water Environment Research, Volume 87, Number 10—Copyright © 2015 Water Environment Federation and cadmium resulted in effects on lysomal biomarkers and An evaluation was made of the effect of diuron, a embryoni c development. However the toxicants did not photosynthetic inhibitor, used in sugar fields near the Great result in an increase in adverse effects. Barrier Reef, Australia (Holms et al. 2014). In a 12 year Tian et al. (2014) studied the impact of titanium
Recommended publications
  • SYSTEMATICS of the CALIGIDAE, COPEPODS PARASITIC on MARINE FISHES Vii
    Systematics of the Caligidae, copepods parasitic on marine fishes CRUSTACEANA MONOGRAPHS constitutes a series of books on carcinology in its widest sense. Contributions are handled by the Series Editor and may be submitted through the office of KONINKLIJKE BRILL Academic Publishers N.V., P.O. Box 9000, NL-2300 PA Leiden, The Netherlands. Series Editor: CHARLES H.J.M. FRANSEN, c/o Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands; e-mail: [email protected] Founding Editor: J.C. VON VAUPEL KLEIN, Utrecht, The Netherlands. Editorial Committee: N.L. BRUCE, Wellington, New Zealand; Mrs. M. CHARMANTIER-DAURES, Montpellier, France; Mrs. D. DEFAYE, Paris, France; H. DIRCKSEN, Stockholm, Sweden; R.C. GUIA¸SU, Toronto, Ontario, Canada; R.G. HARTNOLL, Port Erin, Isle of Man; E. MACPHERSON, Blanes, Spain; P.K.L. NG, Singapore, Rep. of Singapore; H.-K. SCHMINKE, Oldenburg, Germany; F.R. SCHRAM, Langley, WA, U.S.A.; C.D. SCHUBART, Regensburg, Germany; G. VA N D E R VELDE, Nijmegen, Netherlands; H.P. WAGNER, Leiden, Netherlands; D.I. WILLIAMSON, Port Erin, Isle of Man. Published in this series: CRM 001 - Stephan G. Bullard Larvae of anomuran and brachyuran crabs of North Carolina CRM 002 - Spyros Sfenthourakis et al. (eds.) The biology of terrestrial isopods, V CRM 003 - Tomislav Karanovic Subterranean Copepoda from arid Western Australia CRM 004 - Katsushi Sakai Callianassoidea of the world (Decapoda, Thalassinidea) CRM 005 - Kim Larsen Deep-sea Tanaidacea from the Gulf of Mexico CRM 006 - Katsushi Sakai Upogebiidae of the world (Decapoda, Thalassinidea) CRM 007 - Ivana Karanovic Candoninae (Ostracoda) from the Pilbara region in Western Australia CRM 008 - Frank D.
    [Show full text]
  • Aquatic Toxicology MEES 743 3 Credits SPRING 2019 (Also Listed As TOX 625)
    Aquatic Toxicology MEES 743 3 credits SPRING 2019 (also listed as TOX 625) Course Objectives / Overview This course will provide students with a broad perspective on the subject INSTRUCTOR DETAILS: of aquatic toxicology. It is a comprehensive course in which a definitive description of basic concepts and principles, laboratory testing and field Faculty Details: situations, as well as examples of typical data and their interpretation and Dr. Carys Mitchelmore use by industry and water resource managers, will be discussed. The fate [email protected] and toxicological action of environmental pollutants will be examined in 410-326-7283 aquatic ecosystems, whole organisms and at the cellular, biochemical and molecular levels. Current and emerging issues will be used as case studies CLASS MEETING DETAILS: throughout the course to illustrate specific ecosystems (e.g. Chesapeake Bay), pollution events (e.g. Deepwater Horizon Oil Spill), particular Date: Monday/Wednesday organisms (e.g. coral reefs) or a specific class of contaminants. Classes Time: 12-1.30pm will consist of lectures by the instructor together with some guest Originating Site: UMCES, CBL speakers in addition to group discussions. IVN bridge number: (800414) Phone call in number: (***) Expected Learning Outcomes Room phone number: CBL, Ed Houde Teaching suite Following completion of this course students will; (1) Have experience applying basic concepts in environmental COURSE TYPE: science, including environmental chemistry, biology and Check all that apply physiology, ecosystem health, management and regulatory issues, ☐ as they relate to pollution of aquatic ecosystems. Foundation (2) Be able to identify a current topic of concern and summarize ☐ Professional Development current data/papers in an oral presentation including directing an ☐ Issue Study Group open discussion with the rest of the class.
    [Show full text]
  • AN INTRODUCTION to AQUATIC TOXICOLOGY This Page Intentionally Left Blank €ƒÂ€ an INTRODUCTION to AQUATIC TOXICOLOGY
    AN INTRODUCTION TO AQUATIC TOXICOLOGY This page intentionally left blank AN INTRODUCTION TO AQUATIC TOXICOLOGY MIKKO NIKINMAA Professor of Zoology, Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic press is an imprint of Elsevier Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • Marine Litt Er Regional Action Plan
    Marine Litter Regional Action Plan Marine Litter 1 Regional Action Plan for Prevention and Management of Marine Litter in the North-East Atlantic This Regional Action Plan (RAP) sets out the policy context for OSPAR’s work on marine litter, describes the various types of actions that OSPAR will work on over the coming years and provides a timetable to guide the achievement of these actions. The RAP is organised in four sections: SECTION I follows the brief introduction below and sets the objectives, the geographical scope, principles and approaches that should frame implementation. SECTION II presents the actions to be implemented. The actions have been grouped in four themes as follows: A. the reduction of litter from sea-based sources and B. the reduction of litter from land- based sources, C. the removal of existing litter from the marine environment and D. education and outreach on the topic of marine litter. SECTION III describes the necessary monitoring and assessment. SECTION IV outlines how the plan will be implemented and followed up by OSPAR. 2 © Eleanor Partridge/Marine Photobank Marine Litter Marine litter covers any solid material which has been deliberately discarded, or unintentionally lost on beaches and on shores or at sea, including materials transported into the marine environment from land by rivers, draining or sewage systems or winds. It includes any persistent, manufactured or processed solid material. Marine litter originates from different sea- and land-based sources and is largely based on the prevailing production and consumption pattern. Marine litter consists of a wide range of materials, including plastic, metal, wood, rubber, glass and paper.
    [Show full text]
  • Harmful Algal Blooms (Habs) and Public Health: Progress and Current Challenges
    Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges Edited by Lesley V. D’Anglada, Elizabeth D. Hilborn and Lorraine C. Backer Printed Edition of the Special Issue Published in Toxins www.mdpi.com/journal/toxins Lesley V. D’Anglada, Elizabeth D. Hilborn and Lorraine C. Backer (Eds.) Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges This book is a reprint of the Special Issue that appeared in the online, open access journal, Toxins (ISSN 2072-6651) from 2014–2015 (available at: http://www.mdpi.com/journal/toxins/special_issues/HABs?sort=asc). Guest Editors Lesley V. D’Anglada U.S. Environmental Protection Agency USA Elizabeth D. Hilborn United States Environmental Protection Agency USA Lorraine C. Backer National Center for Environmental Health USA Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Chao Xiao 1. Edition 2016 MDPI • Basel • Beijing • Wuhan • Barcelona ISBN 978-3-03842-155-9 (Hbk) ISBN 978-3-03842-156-6 (PDF) © 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of physical copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents List of Contributors ............................................................................................................ VII About the Guest Editors......................................................................................................... X Preface Reprinted from: Toxins 2015, 7, 4437-4441 http://www.mdpi.com/2072-6651/7/11/4437 ....................................................................
    [Show full text]
  • Marine Litter Legislation: a Toolkit for Policymakers
    Marine Litter Legislation: A Toolkit for Policymakers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P.O. Box 30552, Nairobi, Kenya. Acknowledgments This report was developed by the Environmental Law Institute (ELI) for the United Nations Environment Programme (UNEP). It was researched, drafted, and produced by Carl Bruch, Kathryn Mengerink, Elana Harrison, Davonne Flanagan, Isabel Carey, Thomas Casey, Meggan Davis, Elizabeth Hessami, Joyce Lombardi, Norka Michel- en, Colin Parts, Lucas Rhodes, Nikita West, and Sofia Yazykova. Within UNEP, Heidi Savelli, Arnold Kreilhuber, and Petter Malvik oversaw the development of the report. The authors express their appreciation to the peer reviewers, including Catherine Ayres, Patricia Beneke, Angela Howe, Ileana Lopez, Lara Ognibene, David Vander Zwaag, and Judith Wehrli. Cover photo: Plastics floating in the ocean The views expressed in this report do not necessarily reflect those of the United Nations Environment Programme. © 2016. United Nations Environment Programme. Marine Litter Legislation: A Toolkit for Policymakers Contents Foreword ..................................................................................................
    [Show full text]
  • Development of Bioaccumulation Factors for Protection of Fish and Wildlife in the Great Lakes
    National Sediment Bioaccumulation Conference Development of Bioaccumulation Factors for Protection of Fish and Wildlife in the Great Lakes Philip M. Cook and Dr. Lawrence P. Burkhard U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota ioaccumulation factor (BAF) development for ap­ factors that must be considered when predicting bioaccu­ plication to the Great Lakes, and in particular for mulation from measured or predicted concentrations of the recent Great Lakes Water Quality Initiative chemicals in the water and sediments of the ecosystem. (GLWQI) effort of U.S. EPA and the respective Great Lakes The bioavailability considerations that remain, after in­ states, illustrates the importance of the linkage between corporating the influence of organism lipid, organic car­ sediments and the water column and its influence on bon in water and sediments, and trophic level into BAFfds B f exposure of all aquatic biota. This presentation included and BSAFs to reduce uncertainty for site-specific a discussion of the development and application of bioavailability conditions, are shown on the z-axis. Ba­ bioaccumulation factors for fish, both water-based BAFs sically, this residual bioavailability factor is the chemical and biota-sediment accumulation factors (BSAFs), with distribution between water and sediment which can vary emphasis on the role of sediments in bioaccumulation of between ecosystems or vary temporally and spatially persistent, hydrophobic non-polar organic chemicals by within an ecosystem. Chemical properties which influ­ both benthic and pelagic organisms. Choices of bioaccu­ ence bioaccumulation are shown on the x-axis. The mulation factors are important because they will strongly octanol-water partition coefficient (Kow) is the primary influence predictions of toxic effects in aquatic organ­ indicator of chemical hydrophobicity and bioaccumula­ isms, especially when chemical residue-based dose-re­ tion potential.
    [Show full text]
  • Chemotherapeutants Against Salmon Lice Lepeophtheirus Salmonis – Screening of Efficacy
    Chemotherapeutants against salmon lice Lepeophtheirus salmonis – screening of efficacy Stian Mørch Aaen Thesis for the degree of Philosophiae Doctor Department of Food Safety and Infection Biology Faculty of Veterinary Medicine and Biosciences Norwegian University of Life Sciences Adamstuen 2016 1 2 TABLE OF CONTENTS Acknowledgments 5 Acronyms/terminology 7 List of papers 8 Summary 9 Sammendrag 9 1 Introduction 11 1.1 Salmon farming in an international perspective; industrial challenges 11 1.2 Salmon lice 12 1.2.1 History and geographic distribution 12 1.2.2 Salmon lice life cycle 14 1.2.3 Pathology caused by salmon lice 16 1.2.4 Salmon lice cultivation in the lab 16 1.3 Approaches to combat sea lice 17 1.3.1 Medicinal interference: antiparasitic chemotherapeutants 17 1.3.2 Resistance in sea lice against chemotherapeutants 19 1.3.3 Non-medicinal intervention: examples 22 1.3.3.1 Physical barriers 23 1.3.3.2 Optical and acoustic control measures 23 1.3.3.3 Functional feeds, vaccine, breeding 24 1.3.3.4 Biological de-lousing: cleaner fish and freshwater 24 1.3.3.5 Physical removal 24 1.3.3.6 Fallowing and geographical zones 25 1.4 Rationale 25 2 Aims 26 3 Materials and methods 26 3.1 Materials 26 3.1.1 Salmon lice 26 3.1.2 Fish – Atlantic salmon 26 3.1.3 Water 27 3.1.3 Medicinal compounds 27 3.1.4 Dissolvents 29 3.2 Methods 29 3.2.1 Hatching assays with egg strings 29 3.2.2 Survival assays with nauplii 29 3.2.3 Bioassays with preadults 30 3.2.4 Statistical analysis 31 4 Summary of papers, I-IV 32 5 Discussion 35 5.1 Novel methods for medicine screening 35 5.2 Industrial innovation in aquaculture and pharmaceutical companies 35 5.3 Administration routes of medicinal compounds to fish 36 5.4 Mixing and bioavailability of medicinal products in seawater 37 5.5 Biochemical targets in L.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Comparative Study of Potential Transfer of Natural and Anthropogenic Cadmium to Plankton Communities in the North-West African Upwelling
    1 Science Of The Total Environment A chimer February 2015, Volume 505 Pages 870-888 r http://archimer.ifremer.fr http://dx.doi.org/10.1016/j.scitotenv.2014.10.045 http://archimer.ifremer.fr/doc/00252/36310/ © 2014 Elsevier B.V. All rights reserved. Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling Auger Pierre-Amael 1 * , Machu Eric 1, 4, Gorgues Thomas 1, 4, Grima Nicolas 3, 4, Waeles Mathieu 2, 4 1 UBO, IRD, IFREMER, LPO,UMR 6523,CNRS, F-29280 Plouzane, France. 2 UBO, IRD, Lab Environm Mario LEMAR, UMR 6539,CNRS, F-29280 Plouzane, France. 3 CNRS, France 4 Ifremer, France * Corresponding author : Pierre Amael Auger, tel.: + 33 298498662 ; email address : [email protected] Abstract : A Lagrangian approach based on a physical-biogeochemical modeling was used to compare the potential transfer of cadmium (Cd) from natural and anthropogenic sources to plankton communities (Cd-uptake) in the NorthWest African upwelling. In this region, coastal upwelling was estimated to be the main natural source of Cd while the most significant anthropogenic source for marine ecosystem is provided by phosphate industry. In our model experiment, Cd-uptake (natural or anthropogenic) in the North-West African upwelling is the result of an interplay between the Cd dispersion (by advection processes) and the simulated biological productivity. In the Moroccan waters, advection processes limit the residence time of water masses resulting in a low natural Cd-uptake by plankton communities while anthropogenic Cd-uptake is high. As expected, the situation is reversed in the Senegalo-Mauritanian upwelling where natural Cd-uptake is higher than anthropogenic Cd-uptake.
    [Show full text]
  • An Integrated Review of Concepts and Initiatives for Mining the Technosphere: Towards a New Taxonomy
    An integrated review of concepts and initiatives for mining the technosphere: towards a new taxonomy Nils Johansson, Joakim Krook, Mats Eklund and Björn Berglund Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Nils Johansson, Joakim Krook, Mats Eklund and Björn Berglund, An integrated review of concepts and initiatives for mining the technosphere:towards a new taxonomy, 2013, Journal of Cleaner Production, (55), 35-44. http://dx.doi.org/10.1016/j.jclepro.2012.04.007 Copyright: Elsevier http://www.elsevier.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77301 10 439 words An Integrated Review of Concepts and Initiatives for Mining the Technosphere: Towards a New Taxonomy Nils Johanssona*; Joakim Krooka, Mats Eklunda, and Björn Berglunda. *Corresponding author: Department of Management and Engineering, Environmental Technology and Management Linköping University, SE-581 83 Linköping, Sweden. [email protected], +46(0)13 285629. a Department of Management and Engineering, Environmental Technology and Management Linköping University, SE-581 83 Linköping, Sweden. [email protected], [email protected], [email protected]. 1 10 439 words Abstract Stocks of finite resources in the technosphere continue to grow due to human activity, at the expense of decreasing in-ground deposits. Human activity, in other words, is changing the prerequisites for mineral extraction. For that reason, mining will probably have to adapt accordingly, with more emphasis on exploitation of previously extracted minerals. This study reviews the prevailing concepts for mining the technosphere as well as actual efforts to do so, the objectives for mining, the scale of the initiatives, and what makes them different from other reuse and recycling concepts.
    [Show full text]
  • What Is Marine Debris?
    from boating and shoreline recreational activities such as picnicking on beaches. on picnicking as such activities recreational shoreline and boating from washes down storm drains into rivers, and then into the sea. Marine debris also comes comes also debris Marine sea. the into then and rivers, into drains storm down washes A majority of the trash and debris on coasts comes from littering or dumping, where it it where dumping, or littering from comes coasts on debris and trash the of majority A abandoned into the marine environment or the Great Lakes. Great the or environment marine the into abandoned processed and directly or indirectly, intentionally or unintentionally, disposed of or or of disposed unintentionally, or intentionally indirectly, or directly and processed Marine debris is defined as any persistent solid material that is manufactured or or manufactured is that ? material solid persistent any as defined is debris Marine PLASTIC vessels. abandoned and gear fishing derelict to bags plastic and MARINE DEBRIS GARBAGE bottles soda from ranging debris, marine of variety wide a with polluted is ocean Our Plastic is the most common type of marine PATCHES DEBRIS debris in the ocean. Globally, we are consuming more and more single-use Currents and winds move marine debris plastic items, but many countries lack throughout the ocean, sometimes far the waste infrastructure to process it. In from its origin. “Garbage patches” are MARINE places where there is good infrastructure, areas in the ocean where marine debris intentional littering or improper disposal accumulates because of converging may add to the problem. currents. These areas are not solid islands of trash that you can see easily IS Plastic does not biodegrade in the ocean.
    [Show full text]