Indices to Available Isolates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approved Plant List 10/04/12
FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L -
1998 Annual Report
Annual Report of the Bowdoin Scientific Station 1998 Since the Last Annual Report On January 1, 1948, Ernest Joy inaugurated a new guest book for Kent Island. Fifty-one years later, the worn brown ledger (signed by most readers of the Annual Report of the Bowdoin Scientific Station) is almost full. The first entry is that of Raymond Paynter, Bowdoin alumnus ('47), former Field Director of the Bowdoin Scientific Station (1946-8), and current Curator of Birds at Harvard's Museum of Comparative Zoology. The second signature is Chuck Huntington's. The guest book shows that Chuck has spent a part of every month of the year on Kent Island, a distinction shared by Ernest Joy, Bob Cunningham, and not too many other hearty souls since Florence Brown's house in the north field burned to the ground in 1926. Curious about the biology of Kent Island during the winter, I took advantage of a sabbatical leave to experience a bit of January, February and March on the island. Bob Mauck (Kenyon College) and Chuck joined me on the late January trip. On the crossing from Seal Cove to the island, Russell Ingalls took us dragging for sea urchins, known locally as "sea eggs." With just a few gulls soaring soundlessly through clear frigid skies over the tawny bare fields and Common Eiders nowhere to be seen, Kent Island felt familiar but strangely unfamiliar at the same time. It was, in Bob's words, "sort of like seeing your wife with a wig on." By late March, when I returned, the gulls were hurling full-throated. -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N. -
Glossary of Major Terms and Concepts
Glossary of Major Terms and Concepts The following terms and concepts form the core of much of this book. Generally, they appear in boldface type in the text. The chapters in which they are more fully discussed are also given. Acceleration: Faster rate of developmenral evenrs (at any level: cell, organ, individual) in the descendanr; produces peramorphie traits when expressed in the adult pheno type. (Chapters 1 and 2) Allometric heterochrony: Change in a trair as a function of size (as opposed to a function of age in " true" heterochrony); it is useful as adescriptor and can be inrerpretive considering that body size is often a beuer metric of " inrrinsic" age than chronologi cal age. The same categories apply as in " true" heterochrony, only the adjective "allometric" is prefixed: e.g. , " allometric progenesis" is when the descendant ter minates growth at a smaller size (as opposed to age) than the ancestor. (Chapter 2) Allometry: The study of size and shape, usually using biometrie data; the change in size and shape observed. Basic kinds of allometric change include the following. Com plex allometry: occurs when the ratio of the specific growth rates of the traits compared are not constant, a log-log plot comparing the traits will not yield a straight line (i.e., " k" in the allometric formula is inconstanr). Isometry: occurs when there is no change in shape with size increase; that is, when the traits being compared on a log-log plot yield a straight line with a slope (k in the allometric formula) that is effectively equal to 1. -
An Analysis of the Japanese Cerambycid Fauna with Special Reference to Distribution Belts1
Pacific Insects 2 (2) : 123-131 July 31, 1960 AN ANALYSIS OF THE JAPANESE CERAMBYCID FAUNA WITH SPECIAL REFERENCE TO DISTRIBUTION BELTS1 By Masao Hayashi 199, 1-3, NlSHITAKAAI, HIGASHI-SUMIYOSHI, OSAKA, JAPAN In analyzing the Japanese cerambycid fauna, an examination of the geographical ori gins of the elements has been possible from the world-wide point of view, because many valuable contributions have been made by S. Breuning, J. L. Gressitt, E. G. Linsley and other authors on almost every aspect of the study of longicorn beetles in recent years (Sy stematics, zoogeography, ecology and others). As careful records have been made attending to relations between the seasons of ap pearance and activity of beetles, seasonal changes in their vertical distribution, and their precise horizontal distribution in Japan, it is clear that it is impossible to accurately ex plain the complicated true situation by simple indication of the conventional geographical distribution. As the result of recording on a map the precise distribution pattern of each species, it becomes clear that the pattern of each species is distinct, and is discontinuous. When consideration is given in addition to the accompanying data on the relation between the season of their appearance and the change of their vertical distribution, the following three principal types of situation can be found: 1. The distribution pattern has much thickness, namely in spring it appears in the plains or lower mountainous regions, and the altitude inhabited becomes higher with the passing of months, and it is found athigh elevations in summer. Tn this case, the recent origin or the closely allied forms of the species may be traced northward from the pat tern. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Universidade De São Paulo Faculdade De Filosofia, Ciências E Letras De Ribeirão Preto Programa De Pós-Graduação Em Entomologia
UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Ecologia das interações e diversidade de insetos em espécies de Fabaceae no Cerrado” “Ecological interactions and diversity of insects on Fabaceae species in the Brazilian Cerrado” Bruno de Sousa Lopes Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Doutor em Ciências, obtido no Programa de Pós-Graduação em Entomologia. RIBEIRÃO PRETO - SP 2020 UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Ecologia das interações e diversidade de insetos em espécies de Fabaceae no Cerrado” “Ecological interactions and diversity of insects on Fabaceae species in the Brazilian Cerrado” “Versão corrigida” Bruno de Sousa Lopes Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Doutor em Ciências, obtido no Programa de Pós-Graduação em Entomologia. RIBEIRÃO PRETO - SP 2020 i UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Ecologia das interações e diversidade de insetos em espécies de Fabaceae no Cerrado” “Ecological interactions and diversity of insects on Fabaceae species in the Brazilian Cerrado” “Versão corrigida” Bruno de Sousa Lopes Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Doutor em Ciências, obtido no Programa de Pós-Graduação em Entomologia. -
Revision of the Genus Caledonica (Coleoptera: Cicindelidae)
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 15.xi.2016 Volume 56(2), pp. 567–628 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:9A9C852F-454C-41BC-B423-B1D8CA6287A8 Revision of the genus Caledonica (Coleoptera: Cicindelidae) Arnošt KUDRNA Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; e-mail: [email protected] Abstract. A revision of the endemic New Caledonian tiger beetle genus Caledonica Chaudoir, 1860 is presented based on the examination of more than 600 speci- mens including the relevant type material. Neotype is designated for Distipsidera mediolineata Lucas, 1862 and Distipsidera Mniszechii Thomson, 1856 as the original type material is lost. Oxycheila arrogans Montrouzier, 1860 is recognized as an unavailable name because it was proposed in synonymy and is replaced by Caledonica tuberculata Fauvel, 1882, stat. restit. The following new synonymy is proposed: Oxycheila affi nis Montrouzier, 1860 = Caledonica affi nis var. lerati Fleutiaux, 1911, syn. nov. Caledonica luiggiorum sp. nov. and C. rivalieriana sp. nov. are described as new to science. Males of two species, C. longicollis Fauvel, 1903 and C. rubicondosa Deuve, 2006, are described for the fi rst time. Rede- scriptions of all species are given. A dichotomous key to species and subspecies is provided, and a brief history of the taxonomy and nomenclature of this genus is also given. Biology and distribution of most species and behaviour of adults in their biotopes, based on the authorʼs own fi eld research and observations during his three surveys in New Caledonia are presented. Each species is described in detail; its habitus and diagnostic characters are illustrated in colour photographs. -
Sawflies of the Keszthely Hills and Its Surroundings
Natura Somogyiensis 33:107-128. Ka pos vár, 2019 DOI:10.24394/NatSom.2019.33.107 Submitted: 26.09, 2019; Accepted: 30.09, 2019; Published: 15.10, 2019 www.smmi.hu/termtud/ns/ns.htm Sawflies of the Keszthely Hills and its surroundings Attila Haris H-1076 Budapest, Garay street 19 2/20, Hungary, e-mail: [email protected] Haris, A.: Sawflies of the Keszthely Hills and its surroundings. Abstract: 173 species are reported from the Keszthely Hills and its surroundings. Rare species are Pamphilius jucundus (Eversmann, 1847); Pamphilius histrio Latreille, 1812; Orussus unicolor Latreille, 1812; Tremex alchymista Mocsáry, 1886; Tremex magus (Fabricius, 1787); Dolerus (Poodolerus) vernalis Ermolenko, 1964; Strongylogaster mixta (Klug, 1817); Fenella arenariae Zombori, 1978; Fenella nigrita Westwood, 1839; Periclista (Periclista) albiventris (Klug, 1816); Tenthredo (Cephaledo) neobesa Zombori, 1980; Euura fagi (Zaddach, 1876); Pristiphora (Pristiphora) albitibia (A. Costa, 1859) and Pristiphora (Pristiphora) fausta (Hartig, 1837). Keywords: Hymenoptera, Symphyta, Keszthely Hills, Hungary, rare species Introduction Keszthely Hills is the westernmost member of the Transdanubian Mountains. It is built of dolomite, and enriched with limestone formations. The basalt formations of Kovácsi Hill and Tátika-region are the results of the volcanic activity. The other part of the inves- tigated area is the coastal region of Lake Balaton. This region is mainly moorland and wet meadows which were originally part of the lake-bed and turned dry as a result of the water management in the 19th century. The vegetation is abundant from the sub-Mediterranean xerotherm steppes, through closed oak and beech forests to cold gorges that preserve glacial remains. -
CATALOG of SPECIES
ARSARSARSARSARSARS ARSARS CollectionCollectionef ofof EntomopathogenicEntomopathogenic FungalFungal CulturesCultures CATALOG of SPECIES FULLY INDEXED [INCLUDES 9773 ISOLAtes] USDA-ARS Biological Integrated Pest Management Research Robert W. Holley Center for Agriculture and Health 538 Tower Road Ithaca, New York 14853-2901 28 July 2011 Search the ARSEF catalog online at http://www.ars.usda.gov/Main/docs.htm?docid=12125 ARSEF Collection Staff Richard A. Humber, Curator phone: [+1] 607-255-1276 fax: [+1] 607-255-1132 email: [email protected] Karen S. Hansen phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 email: [email protected] Micheal M. Wheeler phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 email: [email protected] USDA-ARS Biological IPM Research Unit Robert W. Holley Center for Agriculture & Health 538 Tower Road Ithaca, New York 14853-2901, USA IMPORTANT NOTE Recent phylogenetically based reclassifications of fungal pathogens of invertebrates Richard A. Humber Insect Mycologist and Curator, ARSEF UPDATED July 2011 Some seemingly dramatic and comparatively recent changes in the classification of a number of fungi may continue to cause confusion or a degree of discomfort to many of the clients of the cultures and informational resources provided by the ARSEF culture collection. This short treatment is an attempt to summarize some of these changes, the reasons for them, and to provide the essential references to the literature in which the changes are proposed. As the Curator of the ARSEF collection I wish to assure you that these changes are appropriate, progressive, and necessary to modernize and to stabilize the systematics of the fungal pathogens affecting insects and other invertebrates, and I urge you to adopt them into your own thinking, teaching, and publications. -
Drivers of Parasitoid Wasps' Community Composition in Cacao Agroforestry Practice in Bahia State, Brazil
3 Drivers of Parasitoid Wasps' Community Composition in Cacao Agroforestry Practice in Bahia State, Brazil Carlos Frankl Sperber1, Celso Oliveira Azevedo2, Dalana Campos Muscardi3, Neucir Szinwelski3 and Sabrina Almeida1 1Laboratory of Orthoptera, Department of General Biology, Federal University of Viçosa, Viçosa, MG, 2Department of Biology, Federal University of Espírito Santo, Vitória, ES, 3Department of Entomolgy, Federal University of Viçosa, Viçosa, MG, Brazil 1. Introduction The world’s total forest area is just over 4 billion hectares, and five countries (the Russian Federation, Brazil, Canada, the United States of America and China) account for more than half of the total forest area (FAO, 2010). Apart from their high net primary production, the world’s forests harbour at least 50% of the world’s biodiversity, which underpins the ecosystem services they provide (MEA, 2005). Primarily the plants, through their physiological processes, such as evapotranspiration, essential to the ecosystem's energy budget, physically dissipate a substantial portion of the absorbed solar radiation (Bonan, 2002), and sequester carbon from the atmosphere. The carbon problem, considered a trend concern around the world due to global warming (Botkin et al, 2007), can be minimized through the carbon sequestration by forests. Forests have the potential of stabilizing, or at least contributing to the stabilization of, atmospheric carbon in the short term (20–50 years), thereby allowing time for the development of more long-lasting technological solutions that reduce carbon emission sources (Sedjo, 2001). Brazil's forests comprise 17 percent of the world's remaining forests, making it the third largest block of remaining frontier forest in the world and ranks first in plant biodiversity among frontier forest nations.