2.4 Formal Power Series
52 CHAPTER 2. ADVANCED COUNTING AND GENERATING FUNCTIONS 2.4 Formal Power Series In this chapter, we will first try to develop the theory of generating functions by getting closed form expressions for some known recurrence relations. These ideas will be used later to get some binomial identities. To do so, we first recall from Page 41 that for all n Q and k Z, k 0, the binomial ∈ n(n 1)(∈n 2) ≥ (n k + 1) coefficients, n , are well defined, using the idea that n = − − · · · − . We k k k! now start with the definition of “formal power series” over Q and study its properties in some detail. n Definition 2.4.1 (Formal power series). An algebraic expression of the form f(x)= anx , n≥0 where a Q for all n 0, is called a formal power series in the indeterminate x overPQ. n ∈ ≥ The set of all formal power series in the indeterminate x, with coefficients from Q will be denoted by (x). P Remark 2.4.2. 1. Given a sequence of numbers an Q : n = 0, 1, 2,... , one associates { ∈ n } n x n two formal power series, namely, anx and an . The expression anx is called n≥0 n≥0 n! n≥0 P P xn P the generating function and the expression an is called the exponential generating n≥0 n! function, for the numbers a : n 0 . P { n ≥ } n n 2. Let f(x) = anx be a formal power series. Then the coefficient of x , for n 0, in n≥0 ≥ f(x) is denotedP by [xn]f(x).
[Show full text]