Class 6 Mathematics Chapter 9(Part-2)

Total Page:16

File Type:pdf, Size:1020Kb

Class 6 Mathematics Chapter 9(Part-2) CLASS 6 MATHEMATICS CHAPTER 9(PART-2) TERMINOLOGY ASSOCIATED WITH ALGEBRA Constants and variables In algebra, we use two types of symbols-constants and variables. Constants-A symbol which has a fixed value is called a constant. Thus, each of 7, -3, 0, etc. , is a constant. Variable A symbol (or letter) which can be given various numerical values is called a variable. Thus, a variable is a number which does not have a fixed value. Variable are generalised numbers or unknown numbers. As variables are usually denoted by letters, so variables are also known as literal (or literal numbers). ALGEBRAIC EXPRESSIONS:- A collection of constants and literals connected by one or more of the operations of addition, subtractions, multiplication and division is called an algebraic expression. TERMS OF ALGEBRAIC EXPRESSION:- The various parts of an algebraic expression separated by + or - Sign are called the terms of the algebraic expression. CONSTANT TERM:- The term of an algebraic expression having no literal is called its constant term. PRODUCT:- When two or more constants or literals (or both) are multiplied, then the result so obtained is called the product. FACTORS:- Each of the quantity (constant or literal) multiplied together to form a product is called a factor of the product. A constant factor is called a numerical factor and other factors are called variable (or literal) factors. COEFFICIENTS:- Any factor of a (non constant) term of an algebraic expression is called the coefficient of the remaining factor of the term. In particular, the constant part is called the numerical coefficient or simply the coefficient of the term and the remaining part is called the literal coefficient of the term. LIKE AND UNLIKE TERMS:- The terms having same literal coefficient are called like terms, otherwise, the terms are called unlike terms. TYPES OF ALGEBRAIC EXPRESSIONS:- Some algebraic expressions have only one term while some other expressions have more than one terms. Various types of algebraic expressions are: MONOMIAL:- An algebraic expression having only one term is called a monomial. BINOMIAL:- An algebraic expression having two terms is called binomial. TRINOMIAL:- An algebraic expression having three terms is called trinomial. MULTINOMIAL:- An algebraic expression having two or more than two terms is called multinomial. POLYNOMIALS IN ONE VARIABLE:- An algebraic expression containing one variable is called a polynomial in that variable if the powers of the variable in each term are non negative integer. Thus, an algebraic expression of the form a + bx + c +d +................... Where a, b, c, d,........... are constants and x is a variable, is called a polynomial in the variable X. The greatest power of X present in the polynomial is called the degree of polynomial. EXAMPLES:- 1- Write down the algebraic expressions whose terms are (a) 3a, -4b, 7c (b) 5 , -2 , - , 8 SOLUTION:- (a) 3a-4b+ 7c (b) 5 -2 - + 8 2- Identify monomials , binomials and trinomials from the following algebraic expressions (a) - 3 (b) 9 - 5 + 7 (c) 2x-3 (d) Pq + rst (e) -5 + ab + bc + ca SOLUTIONS:- (a) As the given expression has only one term , it is a monomial (b) As the given expression has not only three terms it is a trinomial. (c) As the given expression has two terms it is a binomial. (d) As the given expression has two terms it is a binomial. (e) As the given expression has four terms it is a multinomial. 3- Raja scored 30 marks in math , X marks in science and Y marks in English. What is his total score in these three subjects? SOLUTIONS:- Score in maths = 30 Score in science= X Score in English= Y Therefore, total score in these three subjects = 30 + X + Y 4- The length of a rectangular hall is 5 meter less than 3 times the breath of the hall. What is its length, if the breath is b metres? SOLUTIONS:- Breath of the hall = b metres As the length of the hall is 5 metres less than 3 times the breath of the hall , its length = (3×b – 5) metres = (3b-5) metres 5- If meera’s presented age is X years , determine: (a) Meera’s age 5 years from now (b) Meera’s age 3 years ago. (c) Meera’s grandfathers age which is 6 times her age. (d) Meera’s grandmother is two years younger than her grandfather. What is grandmothers age? (e) Meera’s fathers age is 5 years more than 3 times her age. What is her father’s age? SOLUTIONS:- Meera’s present age is X years (a) Meera’s age 5 years from now = (X + 5) years (b) Meera’s age 3 years ago = (X-3) years (c) Meera’s grandfathers age = 6X years (d) Meera’s grandmothers age= (6X – 2) years (e) Meera’s father age = (3X + 5) years Exercise 9.3 1- Write all the terms of each of the following algebraic expressions: (a) 3 – 7x (b) 2 – 5a + b (c) 3 + 4 - 7 + 3 (d) 2 - + + 9 2- Write down the algebraic expression whose terms are: (a) 5, -2x (b) -3, 5 , -7 (c) , - 2 , 3 , 7 3- State the number of term in each of the following algebraic expressions: (a) x÷2 + y-3 (b) (c) 5×ab-7 (d) 7×a+b÷3-c+5 4- Identify monomials, binomials and trinomials from the following algebraic expressions: (a) (b) (c) 5+5x (d) 5x (e) +3 (f) (g) - - + 5abc (h) (i) + (j) (k) 5p ×ab (l) 3÷a - 2×b+c 5- Write down the numerical as well as literal coefficient of each of the following monomials: (a) -7x (b) -2 (c) 6abc 6- Write the numerical coefficient of each term of the expression: - 5x +7 - x - 7- In – 7x , write down the coefficient of (a) X (b) 7x (c) -x (d) Xy (e) (f) (g) (h) 7y 8- In the following , which pairs contain like terms? (a) 5x, -2x (b) 5x, 5y (c) -2xyz, -3 (d) 10xyz , -10xyz (e) 2 (f) 2xy, -3yx (g) X, (h) 6,6x (i) 2xy, 3xyz 9- Identify which of the following algebraic expressions are polynomials. If so , write their degrees: (a) - x – (b) 3 -3 10- Which out of the following are expressions with numbers only? (a) 2y + 3 (b) (7×20)-8z (c) 5×(21-7)+9×2 (d) 5-11n 11- Write expression for the following : (a) 11 added to 2 m (b) 11 subtracted from 2 m (c) 3 added to 5 times y (d) 3 subtracted from 5 times y (e) Y is multiplied by -8 and then 5 is added to the result (f) Y is multiplied by 5 and then the result is subtracted from 16 12- Write the following in mathematical form using signs and symbols: (a) 6 more than thrice a number x (b) 7 taken away from y (c) 3 less than quotient of x by y 13- Form six expressions using t and 4.use not more than one number operation and every expression must have t in it. 14- A student scored x marks in English but the teacher deducted 5 marks for bad handwriting. What was the students final score in English? 15- Raju’s fathers age is two years more than 3 times Raju’s age . if Raju’s present age is y years, then what is his fathers age? 16- Mohini is x years old. Express the following in algebraic form. (a) 3 times Mohini’s age next year (b) 4 times Mohini’s age three years ago (c) The present age of mohini’s uncle, if her uncle is five times as old as Mohini will be 2 years from now. 17- A bus travels at v km per hour. It is going from delhi to jaipur. After the bus has travelled five hours , jaipur is still 20 km away. What is the distance from delhi to jaipur? .
Recommended publications
  • An Introduction to Mathematical Modelling
    An Introduction to Mathematical Modelling Glenn Marion, Bioinformatics and Statistics Scotland Given 2008 by Daniel Lawson and Glenn Marion 2008 Contents 1 Introduction 1 1.1 Whatismathematicalmodelling?. .......... 1 1.2 Whatobjectivescanmodellingachieve? . ............ 1 1.3 Classificationsofmodels . ......... 1 1.4 Stagesofmodelling............................... ....... 2 2 Building models 4 2.1 Gettingstarted .................................. ...... 4 2.2 Systemsanalysis ................................. ...... 4 2.2.1 Makingassumptions ............................. .... 4 2.2.2 Flowdiagrams .................................. 6 2.3 Choosingmathematicalequations. ........... 7 2.3.1 Equationsfromtheliterature . ........ 7 2.3.2 Analogiesfromphysics. ...... 8 2.3.3 Dataexploration ............................... .... 8 2.4 Solvingequations................................ ....... 9 2.4.1 Analytically.................................. .... 9 2.4.2 Numerically................................... 10 3 Studying models 12 3.1 Dimensionlessform............................... ....... 12 3.2 Asymptoticbehaviour ............................. ....... 12 3.3 Sensitivityanalysis . ......... 14 3.4 Modellingmodeloutput . ....... 16 4 Testing models 18 4.1 Testingtheassumptions . ........ 18 4.2 Modelstructure.................................. ...... 18 i 4.3 Predictionofpreviouslyunuseddata . ............ 18 4.3.1 Reasonsforpredictionerrors . ........ 20 4.4 Estimatingmodelparameters . ......... 20 4.5 Comparingtwomodelsforthesamesystem . .........
    [Show full text]
  • Example 10.8 Testing the Steady-State Approximation. ⊕ a B C C a B C P + → → + → D Dt K K K K K K [ ]
    Example 10.8 Testing the steady-state approximation. Å The steady-state approximation contains an apparent contradiction: we set the time derivative of the concentration of some species (a reaction intermediate) equal to zero — implying that it is a constant — and then derive a formula showing how it changes with time. Actually, there is no contradiction since all that is required it that the rate of change of the "steady" species be small compared to the rate of reaction (as measured by the rate of disappearance of the reactant or appearance of the product). But exactly when (in a practical sense) is this approximation appropriate? It is often applied as a matter of convenience and justified ex post facto — that is, if the resulting rate law fits the data then the approximation is considered justified. But as this example demonstrates, such reasoning is dangerous and possible erroneous. We examine the mechanism A + B ¾¾1® C C ¾¾2® A + B (10.12) 3 C® P (Note that the second reaction is the reverse of the first, so we have a reversible second-order reaction followed by an irreversible first-order reaction.) The rate constants are k1 for the forward reaction of the first step, k2 for the reverse of the first step, and k3 for the second step. This mechanism is readily solved for with the steady-state approximation to give d[A] k1k3 = - ke[A][B] with ke = (10.13) dt k2 + k3 (TEXT Eq. (10.38)). With initial concentrations of A and B equal, hence [A] = [B] for all times, this equation integrates to 1 1 = + ket (10.14) [A] A0 where A0 is the initial concentration (equal to 1 in work to follow).
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Operations with Algebraic Expressions: Addition and Subtraction of Monomials
    Operations with Algebraic Expressions: Addition and Subtraction of Monomials A monomial is an algebraic expression that consists of one term. Two or more monomials can be added or subtracted only if they are LIKE TERMS. Like terms are terms that have exactly the SAME variables and exponents on those variables. The coefficients on like terms may be different. Example: 7x2y5 and -2x2y5 These are like terms since both terms have the same variables and the same exponents on those variables. 7x2y5 and -2x3y5 These are NOT like terms since the exponents on x are different. Note: the order that the variables are written in does NOT matter. The different variables and the coefficient in a term are multiplied together and the order of multiplication does NOT matter (For example, 2 x 3 gives the same product as 3 x 2). Example: 8a3bc5 is the same term as 8c5a3b. To prove this, evaluate both terms when a = 2, b = 3 and c = 1. 8a3bc5 = 8(2)3(3)(1)5 = 8(8)(3)(1) = 192 8c5a3b = 8(1)5(2)3(3) = 8(1)(8)(3) = 192 As shown, both terms are equal to 192. To add two or more monomials that are like terms, add the coefficients; keep the variables and exponents on the variables the same. To subtract two or more monomials that are like terms, subtract the coefficients; keep the variables and exponents on the variables the same. Addition and Subtraction of Monomials Example 1: Add 9xy2 and −8xy2 9xy2 + (−8xy2) = [9 + (−8)] xy2 Add the coefficients. Keep the variables and exponents = 1xy2 on the variables the same.
    [Show full text]
  • Differentiation Rules (Differential Calculus)
    Differentiation Rules (Differential Calculus) 1. Notation The derivative of a function f with respect to one independent variable (usually x or t) is a function that will be denoted by D f . Note that f (x) and (D f )(x) are the values of these functions at x. 2. Alternate Notations for (D f )(x) d d f (x) d f 0 (1) For functions f in one variable, x, alternate notations are: Dx f (x), dx f (x), dx , dx (x), f (x), f (x). The “(x)” part might be dropped although technically this changes the meaning: f is the name of a function, dy 0 whereas f (x) is the value of it at x. If y = f (x), then Dxy, dx , y , etc. can be used. If the variable t represents time then Dt f can be written f˙. The differential, “d f ”, and the change in f ,“D f ”, are related to the derivative but have special meanings and are never used to indicate ordinary differentiation. dy 0 Historical note: Newton used y,˙ while Leibniz used dx . About a century later Lagrange introduced y and Arbogast introduced the operator notation D. 3. Domains The domain of D f is always a subset of the domain of f . The conventional domain of f , if f (x) is given by an algebraic expression, is all values of x for which the expression is defined and results in a real number. If f has the conventional domain, then D f usually, but not always, has conventional domain. Exceptions are noted below.
    [Show full text]
  • Algebraic Expressions 25
    Section P.3 Algebraic Expressions 25 P.3 Algebraic Expressions What you should learn: Algebraic Expressions •How to identify the terms and coefficients of algebraic A basic characteristic of algebra is the use of letters (or combinations of letters) expressions to represent numbers. The letters used to represent the numbers are variables, and •How to identify the properties of combinations of letters and numbers are algebraic expressions. Here are a few algebra examples. •How to apply the properties of exponents to simplify algebraic x 3x, x ϩ 2, , 2x Ϫ 3y expressions x2 ϩ 1 •How to simplify algebraic expressions by combining like terms and removing symbols Definition of Algebraic Expression of grouping A collection of letters (called variables) and real numbers (called constants) •How to evaluate algebraic expressions combined using the operations of addition, subtraction, multiplication, divi- sion and exponentiation is called an algebraic expression. Why you should learn it: Algebraic expressions can help The terms of an algebraic expression are those parts that are separated by you construct tables of values. addition. For example, the algebraic expression x2 Ϫ 3x ϩ 6 has three terms: x2, For instance, in Example 14 on Ϫ Ϫ page 33, you can determine the 3x, and 6. Note that 3x is a term, rather than 3x, because hourly wages of miners using an x2 Ϫ 3x ϩ 6 ϭ x2 ϩ ͑Ϫ3x͒ ϩ 6. Think of subtraction as a form of addition. expression and a table of values. The terms x2 and Ϫ3x are called the variable terms of the expression, and 6 is called the constant term of the expression.
    [Show full text]
  • Algebraic Expression Meaning and Examples
    Algebraic Expression Meaning And Examples Unstrung Derrin reinfuses priggishly while Aamir always euhemerising his jugginses rousts unorthodoxly, he derogate so heretofore. Exterminatory and Thessalonian Carmine squilgeed her feudalist inhalants shrouds and quizzings contemptuously. Schizogenous Ransom polarizing hottest and geocentrically, she sad her abysm fightings incommutably. Do we must be restricted or subtracted is set towards the examples and algebraic expression consisting two terms in using the introduction and value Why would you spend time in class working on substitution? The most obvious feature of algebra is the use of special notation. An algebraic expression may consist of one or more terms added or subtracted. It is not written in the order it is read. Now we look at the inner set of brackets and follow the order of operations within this set of brackets. Every algebraic equations which the cube is from an algebraic expression of terms can be closed curve whose vertices are written. Capable an expression two terms at splashlearn is the first term in the other a variable, they contain variables. There is a wide variety of word phrases that translate into sums. Evaluate each of the following. The factor of a number is a number that divides that number exactly. Why do I have to complete a CAPTCHA? Composed of the pedal triangle a polynomial an consisting two terms or set of one or a visit, and distributivity of an expression exists but it! The first thing to note is that in algebra we use letters as well as numbers. Proceeding with the requested move may negatively impact site navigation and SEO.
    [Show full text]
  • PLEASANTON UNIFIED SCHOOL DISTRICT Math 8/Algebra I Course Outline Form Course Title
    PLEASANTON UNIFIED SCHOOL DISTRICT Math 8/Algebra I Course Outline Form Course Title: Math 8/Algebra I Course Number/CBED Number: Grade Level: 8 Length of Course: 1 year Credit: 10 Meets Graduation Requirements: n/a Required for Graduation: Prerequisite: Math 6/7 or Math 7 Course Description: Main concepts from the CCSS 8th grade content standards include: knowing that there are numbers that are not rational, and approximate them by rational numbers; working with radicals and integer exponents; understanding the connections between proportional relationships, lines, and linear equations; analyzing and solving linear equations and pairs of simultaneous linear equations; defining, evaluating, and comparing functions; using functions to model relationships between quantities; understanding congruence and similarity using physical models, transparencies, or geometry software; understanding and applying the Pythagorean Theorem; investigating patterns of association in bivariate data. Algebra (CCSS Algebra) main concepts include: reason quantitatively and use units to solve problems; create equations that describe numbers or relationships; understanding solving equations as a process of reasoning and explain reasoning; solve equations and inequalities in one variable; solve systems of equations; represent and solve equations and inequalities graphically; extend the properties of exponents to rational exponents; use properties of rational and irrational numbers; analyze and solve linear equations and pairs of simultaneous linear equations; define,
    [Show full text]
  • The Exponential Constant E
    The exponential constant e mc-bus-expconstant-2009-1 Introduction The letter e is used in many mathematical calculations to stand for a particular number known as the exponential constant. This leaflet provides information about this important constant, and the related exponential function. The exponential constant The exponential constant is an important mathematical constant and is given the symbol e. Its value is approximately 2.718. It has been found that this value occurs so frequently when mathematics is used to model physical and economic phenomena that it is convenient to write simply e. It is often necessary to work out powers of this constant, such as e2, e3 and so on. Your scientific calculator will be programmed to do this already. You should check that you can use your calculator to do this. Look for a button marked ex, and check that e2 =7.389, and e3 = 20.086 In both cases we have quoted the answer to three decimal places although your calculator will give a more accurate answer than this. You should also check that you can evaluate negative and fractional powers of e such as e1/2 =1.649 and e−2 =0.135 The exponential function If we write y = ex we can calculate the value of y as we vary x. Values obtained in this way can be placed in a table. For example: x −3 −2 −1 01 2 3 y = ex 0.050 0.135 0.368 1 2.718 7.389 20.086 This is a table of values of the exponential function ex.
    [Show full text]
  • 3 Formal Power Series
    MT5821 Advanced Combinatorics 3 Formal power series Generating functions are the most powerful tool available to combinatorial enu- merators. This week we are going to look at some of the things they can do. 3.1 Commutative rings with identity In studying formal power series, we need to specify what kind of coefficients we should allow. We will see that we need to be able to add, subtract and multiply coefficients; we need to have zero and one among our coefficients. Usually the integers, or the rational numbers, will work fine. But there are advantages to a more general approach. A favourite object of some group theorists, the so-called Nottingham group, is defined by power series over a finite field. A commutative ring with identity is an algebraic structure in which addition, subtraction, and multiplication are possible, and there are elements called 0 and 1, with the following familiar properties: • addition and multiplication are commutative and associative; • the distributive law holds, so we can expand brackets; • adding 0, or multiplying by 1, don’t change anything; • subtraction is the inverse of addition; • 0 6= 1. Examples incude the integers Z (this is in many ways the prototype); any field (for example, the rationals Q, real numbers R, complex numbers C, or integers modulo a prime p, Fp. Let R be a commutative ring with identity. An element u 2 R is a unit if there exists v 2 R such that uv = 1. The units form an abelian group under the operation of multiplication. Note that 0 is not a unit (why?).
    [Show full text]
  • 9 Power and Polynomial Functions
    Arkansas Tech University MATH 2243: Business Calculus Dr. Marcel B. Finan 9 Power and Polynomial Functions A function f(x) is a power function of x if there is a constant k such that f(x) = kxn If n > 0, then we say that f(x) is proportional to the nth power of x: If n < 0 then f(x) is said to be inversely proportional to the nth power of x. We call k the constant of proportionality. Example 9.1 (a) The strength, S, of a beam is proportional to the square of its thickness, h: Write a formula for S in terms of h: (b) The gravitational force, F; between two bodies is inversely proportional to the square of the distance d between them. Write a formula for F in terms of d: Solution. 2 k (a) S = kh ; where k > 0: (b) F = d2 ; k > 0: A power function f(x) = kxn , with n a positive integer, is called a mono- mial function. A polynomial function is a sum of several monomial func- tions. Typically, a polynomial function is a function of the form n n−1 f(x) = anx + an−1x + ··· + a1x + a0; an 6= 0 where an; an−1; ··· ; a1; a0 are all real numbers, called the coefficients of f(x): The number n is a non-negative integer. It is called the degree of the polynomial. A polynomial of degree zero is just a constant function. A polynomial of degree one is a linear function, of degree two a quadratic function, etc. The number an is called the leading coefficient and a0 is called the constant term.
    [Show full text]
  • Formal Power Series License: CC BY-NC-SA
    Formal Power Series License: CC BY-NC-SA Emma Franz April 28, 2015 1 Introduction The set S[[x]] of formal power series in x over a set S is the set of functions from the nonnegative integers to S. However, the way that we represent elements of S[[x]] will be as an infinite series, and operations in S[[x]] will be closely linked to the addition and multiplication of finite-degree polynomials. This paper will introduce a bit of the structure of sets of formal power series and then transfer over to a discussion of generating functions in combinatorics. The most familiar conceptualization of formal power series will come from taking coefficients of a power series from some sequence. Let fang = a0; a1; a2;::: be a sequence of numbers. Then 2 the formal power series associated with fang is the series A(s) = a0 + a1s + a2s + :::, where s is a formal variable. That is, we are not treating A as a function that can be evaluated for some s0. In general, A(s0) is not defined, but we will define A(0) to be a0. 2 Algebraic Structure Let R be a ring. We define R[[s]] to be the set of formal power series in s over R. Then R[[s]] is itself a ring, with the definitions of multiplication and addition following closely from how we define these operations for polynomials. 2 2 Let A(s) = a0 + a1s + a2s + ::: and B(s) = b0 + b1s + b1s + ::: be elements of R[[s]]. Then 2 the sum A(s) + B(s) is defined to be C(s) = c0 + c1s + c2s + :::, where ci = ai + bi for all i ≥ 0.
    [Show full text]