PHY 126 Chapter 13 Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

PHY 126 Chapter 13 Lecture Notes PHY 126 Chapter 13 Lecture Notes Chapter 13: Fluid Force & Pressure OBJECTIVES Define and determine buoyant force Define and determine the force of fluid pressure BUOYANCY What we weigh in air and what we weigh in water is actually different. This is due to buoyancy of the fluid that the object is being immersed in. Archimedes Principle: Any object placed in a fluid apparently loses weight equal to the weight of the displaced fluid. Objects that weigh more displace more water. For instance, a cargo ship that is empty will displace less water than a full cargo ship. (Draw a sketch). This principle is taken into consideration when constructing very heavy cargo carriers that use water as their routes of transportation. For example, a heavy barge will displace a great amount of water. To compensate for this, barges are built very long and wide so the water is displaced over a large area, thus keeping the carrier from being completely submerged and eventually sinking. Buoyant force is the upward force exerted on a submerged or partially submerged object in water. The buoyant force is equal to the weight of the water that is displaced by the object. Note that the buoyant force opposes the force of gravity acting on an object. What can found as a result of Archimedes Principle is that an object essentially weighs less in water than in air. The object’s weight in water is known as its “apparent weight”. WEIGHT IN WATER (known as “apparent weight) = WEIGHT IN AIR – BUOYANT FORCE (weight of displaced water) BUOYANT FORCE = WEIGHT IN AIR – WEIGHT IN WATER EXAMPLE 1: A piece of metal weighs 67 N in the air and 62 N in the water. Find the buoyant force of the water. BUOYANT FORCE = WEIGHT IN AIR – WEIGHT IN WATER = 67 N – 62 N BUOYANT FORCE = 5 N 1 | Susan S. Gorelick Lecture Notes P H Y 1 2 6 C H 1 3 PHY 126 Chapter 13 Lecture Notes To better understand the concept of buoyancy, density must be considered. The density of an object can be found by the following equation: 풎 푫 = 푽 The density of an object is the amount of mass it has per unit volume 푫 = the density of the fluid that the object is submerged in m = the mass of the object V = volume of the object The density of water is 1,000 kg/m3 Objects that are less dense than water are able to float, and objects that are denser than water will sink when immersed. This is due to the buoyant force of the water. EXAMPLE 2: A block of brass with a measured volume of 0.5m3 has a measured mass of approximately 4,350 kg. Find the density brass based on these findings. GIVEN FIND FORMULA m = 4,350 kg D = ? m D = V = 0.5m3 V 4,350 kg D = 0.5m3 풌품 푫 = ퟖ, ퟕퟎퟎ 풎ퟑ The density of brass is approximately 8,700 kg/m3. (Confirm w/ appendix D on pg. 682) EXAMPLE 3: (Page 682) Based on its density, should you expect the brass block to float or sink? How about a concrete block? What about a block made out of cork? Objects that are less dense than water are able to float, and objects that are denser than water will sink when immersed. Find the densities of these objects from appendix D. The brass and concrete block will sink, while the block made out of cork will float. 2 | Susan S. Gorelick Lecture Notes P H Y 1 2 6 C H 1 3 PHY 126 Chapter 13 Lecture Notes To find the buoyant force exerted on an object immersed in a fluid: 푭푩 = 푫 ∙ 푽 ∙ 품 The buoyant force of exerted on submerged object is equal to the product of the objects (mass) density times its volume times the acceleration due to gravity. FB = buoyant force 푫 = the density of the fluid that the object is submerged in V = the volume of the water displaced by the immersed object g = acceleration due to gravity The density of water is 1,000 kg/m3 EXAMPLE 4: A large metal block displaces 0.25 m3 of water. Find the buoyant force of the water exerted on the block. GIVEN FIND FORMULA 3 Dwater = 1,000 kg/m FB =? FB = D ∙ V ∙ g V = 16.8 m3 g = 9.80 m/s2 kg m F = (1,000 ) (0.25 m3)(9.80 ) B m3 s2 푭푩 = ퟐ, ퟒퟓퟎ 푵 A buoyant force of 2,450 N is exerted on the block. 3 | Susan S. Gorelick Lecture Notes P H Y 1 2 6 C H 1 3 PHY 126 Chapter 13 Lecture Notes EXAMPLE 5: A 75 kg rock lies at the bottom of a pond. Its volume is 0.01m3. A) What is the buoyant force exerted on the rock? GIVEN FIND FORMULA 3 Dwater = 1,000 kg/m FB =? FB = D ∙ V ∙ g V = 0.01 m3 g = 9.80 m/s2 kg m F = (1,000 ) (0.01 m3)(9.80 ) m = 9.80 m/s2 B m3 s2 푭푩 = ퟗퟖ 푵 A buoyant force of 98 N is exerted on the block. B) What is the rock’s apparent weight in the water? APPARENT WEIGHT IN WATER = WEIGHT IN AIR – BUOYANT FORCE APPARENT WEIGHT IN WATER =735 N – 98 N APPARENT WEIGHT IN WATER =637 N C) How much force is needed to lift it while it is in the water? APPARENT WEIGHT IN WATER =637 N, so it must take at least 637 N of force to lift the object while in water. HYDROSTATIC PRESSURE Pressure is defined as the amount of force applied per unit area. 푭 푷 = 푨 P = the pressure applied to an object F = the force applied to an object A = the area of the surface (cross-sectional area) where the force is applied Pressure is measured in N/m2 (Pa) or lb/in2 (psi) Hydrostatic pressure is the amount of pressure liquid exerts on a submerged object. 4 | Susan S. Gorelick Lecture Notes P H Y 1 2 6 C H 1 3 PHY 126 Chapter 13 Lecture Notes As the depth of the water increases, so does the pressure. This is similar to stacking weights on top of each other. The bottom weight feels much more pressure than the top weight due to more bricks stacked on top of it. This is the same for water. The deeper you go, the more water molecules are stacked on top of you, so the more pressure you feel. The hydraulic (Pascal’s) principle states that “The pressure applied to a confined liquid is transmitted without measurable loss throughout the entire liquid to all inner surfaces of that container. Liquid are pretty much non-compressible. This means that when a specific amount of pressure is applied to a liquid, the liquid will transmit that same pressure. Pressure in (P1) Pressure out (P2) 푷풓풆풔풔풖풓풆 풊풏 = 푷풓풆풔풔풖풓풆 풐풖풕 푷ퟏ = 푷ퟐ 푭 푭 ퟏ = ퟐ 푨ퟏ 푨ퟐ What this means is that we can “step up” or “step down” force by changing the area at which the force is applied. (Look the picture of a hydraulic lift in textbook Chapter 13.) EXAMPLE 1: A small force of 5 lb is applied to a small piston with a cross-sectional area of 2 in2. How much force can be exerted by a large piston with an area of 30 in2? GIVEN FIND FORMULA F1 = 5 lb F2 =? 푭ퟏ 푭ퟐ 2 = A1 = 2 in 2 푨ퟏ 푨ퟐ A2 = 30 in P = P 1 2 ퟓ 풍풃 푭ퟐ = ퟐ 풊풏ퟐ ퟑퟎ 풊풏ퟐ ퟓ 풍풃 ퟐ 푭ퟐ = (ퟑퟎ 풊풏 ) ퟐ 풊풏ퟐ 푭ퟐ = ퟕퟓ 풍풃 The large piston can exert a force of 75 lb. EXAMPLE 2: A hospital bed weighs 1600 N and is raised by a large piston with a cross-sectional area of 75 cm2. What force must be exerted on the small piston with a cross-sectional area of 3.75 cm2 to lift the bed? 5 | Susan S. Gorelick Lecture Notes P H Y 1 2 6 C H 1 3 PHY 126 Chapter 13 Lecture Notes GIVEN FIND FORMULA F1 = 1,600 N F2 =? 푭ퟏ 푭ퟐ 2 = A1 = 75 cm 2 푨ퟏ 푨ퟐ A2 = 3.75 cm P = P 1 2 ퟏퟔퟎퟎ 푵 푭ퟐ = ퟕퟓ 풄풎ퟐ ퟑ. ퟕퟓ 풄풎ퟐ ퟏퟔퟎퟎ 푵 푭 = (ퟑ. ퟕퟓ 풄풎ퟐ) ퟐ ퟕퟓ 풄풎ퟐ 푭ퟐ = ퟖퟎ 푵 The small piston must exert a force of 80 N to lift the bed. 6 | Susan S. Gorelick Lecture Notes P H Y 1 2 6 C H 1 3 .
Recommended publications
  • Real-Time Geopotentiometry with Synchronously Linked Optical Lattice Clocks
    1 Real-time geopotentiometry with synchronously linked optical lattice clocks Tetsushi Takano1,2, Masao Takamoto2,3,4, Ichiro Ushijima2,3,4, Noriaki Ohmae1,2,3, Tomoya Akatsuka2,3,4, Atsushi Yamaguchi2,3,4, Yuki Kuroishi5, Hiroshi Munekane5, Basara Miyahara5 & Hidetoshi Katori1,2,3,4 1Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan. 2Innovative Space-Time Project, ERATO, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan. 3Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan. 4RIKEN Center for Advanced Photonics, Wako-shi, Saitama 351-0198, Japan. 5Geospatial Information Authority of Japan, Tsukuba-shi, Ibaraki 305-0811, Japan. According to the Einstein’s theory of relativity, the passage of time changes in a gravitational field1,2. On earth, raising a clock by one centimetre increases its tick rate by 1.1 parts in 1018, enabling optical clocks1,3,4 to perform precision geodesy5. Here, we demonstrate geopotentiometry by determining the height difference of master and slave clocks4 separated by 15 km with uncertainty of 5 cm. The subharmonic of the master clock is delivered through a telecom fibre6 to phase- lock and synchronously interrogate7 the slave clock. This protocol rejects laser noise in the comparison of two clocks, which improves the stability of measuring the gravitational red shift. Such phase-coherently operated clocks facilitate proposals for linking clocks8,9 and interferometers10. Over half a year, 11 2 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9)×10-18, or a height difference of 1,516(5) cm, consistent with an independent measurement by levelling and gravimetry.
    [Show full text]
  • Einstein's Gravitational Field
    Einstein’s gravitational field Abstract: There exists some confusion, as evidenced in the literature, regarding the nature the gravitational field in Einstein’s General Theory of Relativity. It is argued here that this confusion is a result of a change in interpretation of the gravitational field. Einstein identified the existence of gravity with the inertial motion of accelerating bodies (i.e. bodies in free-fall) whereas contemporary physicists identify the existence of gravity with space-time curvature (i.e. tidal forces). The interpretation of gravity as a curvature in space-time is an interpretation Einstein did not agree with. 1 Author: Peter M. Brown e-mail: [email protected] 2 INTRODUCTION Einstein’s General Theory of Relativity (EGR) has been credited as the greatest intellectual achievement of the 20th Century. This accomplishment is reflected in Time Magazine’s December 31, 1999 issue 1, which declares Einstein the Person of the Century. Indeed, Einstein is often taken as the model of genius for his work in relativity. It is widely assumed that, according to Einstein’s general theory of relativity, gravitation is a curvature in space-time. There is a well- accepted definition of space-time curvature. As stated by Thorne 2 space-time curvature and tidal gravity are the same thing expressed in different languages, the former in the language of relativity, the later in the language of Newtonian gravity. However one of the main tenants of general relativity is the Principle of Equivalence: A uniform gravitational field is equivalent to a uniformly accelerating frame of reference. This implies that one can create a uniform gravitational field simply by changing one’s frame of reference from an inertial frame of reference to an accelerating frame, which is rather difficult idea to accept.
    [Show full text]
  • Underwater Survey for Oil and Gas Industry: a Review of Close Range Optical Methods
    remote sensing Review Underwater Survey for Oil and Gas Industry: A Review of Close Range Optical Methods Bertrand Chemisky 1,*, Fabio Menna 2 , Erica Nocerino 1 and Pierre Drap 1 1 LIS UMR 7020, Aix-Marseille Université, CNRS, Université De Toulon, 13397 Marseille, France; [email protected] (E.N.); [email protected] (P.D.) 2 3D Optical Metrology (3DOM) Unit, Bruno Kessler Foundation (FBK), Via Sommarive 18, 38123 Trento, Italy; [email protected] * Correspondence: [email protected] Abstract: In both the industrial and scientific fields, the need for very high-resolution cartographic data is constantly increasing. With the aging of offshore subsea assets, it is very important to plan and maintain the longevity of structures, equipment, and systems. Inspection, maintenance, and repair (IMR) of subsea structures are key components of an overall integrity management system that aims to reduce the risk of failure and extend the life of installations. The acquisition of very detailed data during the inspection phase is a technological challenge, especially since offshore installations are sometimes deployed in extreme conditions (e.g., depth, hydrodynamics, visibility). After a review of high resolution mapping techniques for underwater environment, this article will focus on optical sensors that can satisfy the requirements of the offshore industry by assessing their relevance and degree of maturity. These requirements concern the resolution and accuracy but also cost, ease of implementation, and qualification. With the evolution of embedded computing resources, in-vehicle optical survey solutions are becoming increasingly important in the landscape of large-scale mapping solutions and more and more off-the-shelf systems are now available.
    [Show full text]
  • Just What Did Archimedes Say About Buoyancy?
    Just What Did Archimedes Say About Buoyancy? Erlend H. Graf, SUNY, Stony Brook, NY “A body immersed in a fluid is buoyed What Archimedes Really Said up with a force equal to the weight of Going back to the source,5 Archimedes’ On Float- the displaced fluid.” So goes a venerable ing Bodies, Book I contains a number of statements textbook1 statement of the hydrostatic and proofs that are relevant to the present discussion. principle that bears Archimedes’ name. Archimedes considers three cases separately, namely, Archimedes’ principle is often proved for objects with a density equal to that of the fluid, ob- the special case of a right-circular cylinder jects “lighter” (less dense) than the fluid, and objects or rectangular solid by considering the “heavier” (more dense) than the fluid. difference in hydrostatic forces between He proves the following propositions: the (flat, horizontal) upper and lower sur- faces, and then generalized by the even “Proposition 3. Of solids those which, size for size, are of equal weight with a fluid will, if let down in- more venerable “it can be shown…” that to the fluid, be immersed so that they do not pro- the principle is in fact true for bodies of ject above the surface but do not sink lower. arbitrary shape. “Proposition 4. A solid lighter than a fluid will, if im- mersed in it, not be completely submerged, but rom time to time in this journal,2,3,4 the ques- part of it will project above the surface. tion has arisen as to how to deal with an im- “Proposition 5.
    [Show full text]
  • PRESSURE 68 Kg 136 Kg Pressure: a Normal Force Exerted by a Fluid Per Unit Area
    CLASS Second Unit PRESSURE 68 kg 136 kg Pressure: A normal force exerted by a fluid per unit area 2 Afeet=300cm 0.23 kgf/cm2 0.46 kgf/cm2 P=68/300=0.23 kgf/cm2 The normal stress (or “pressure”) on the feet of a chubby person is much greater than on the feet of a slim person. Some basic pressure 2 gages. • Absolute pressure: The actual pressure at a given position. It is measured relative to absolute vacuum (i.e., absolute zero pressure). • Gage pressure: The difference between the absolute pressure and the local atmospheric pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and so they indicate gage pressure. • Vacuum pressures: Pressures below atmospheric pressure. Throughout this text, the pressure P will denote absolute pressure unless specified otherwise. 3 Other Pressure Measurement Devices • Bourdon tube: Consists of a hollow metal tube bent like a hook whose end is closed and connected to a dial indicator needle. • Pressure transducers: Use various techniques to convert the pressure effect to an electrical effect such as a change in voltage, resistance, or capacitance. • Pressure transducers are smaller and faster, and they can be more sensitive, reliable, and precise than their mechanical counterparts. • Strain-gage pressure transducers: Work by having a diaphragm deflect between two chambers open to the pressure inputs. • Piezoelectric transducers: Also called solid- state pressure transducers, work on the principle that an electric potential is generated in a crystalline substance when it is subjected to mechanical pressure. Various types of Bourdon tubes used to measure pressure.
    [Show full text]
  • A Set of Virtual Experiments of Fluids, Waves, Thermodynamics, Optics, and Modern Physics for Virtual Teaching of Introductory P
    Virtual Experiments Physics III A Set of Virtual Experiments of Fluids, Waves, Thermodynamics, Optics, and Modern Physics for Virtual Teaching of Introductory Physics *Neel Haldolaarachchige Department of Physical Science, Bergen Community College, Paramus, NJ 07652 Kalani Hettiarachchilage Department of Physics, Seton Hall University, South Orange, NJ 07962 January 02, 2020 *Corresponding Author: [email protected] ABSTRACT This is the third series of the lab manuals for virtual teaching of introductory physics classes. This covers fluids, waves, thermodynamics, optics, interference, photoelectric effect, atomic spectra and radiation concepts. A few of these labs can be used within Physics I and a few other labs within Physics II depending on the syllabi of Physics I and II classes. Virtual experiments in this lab manual and our previous Physics I (arXiv.2012.09151) and Physics II (arXiv.2012.13278) lab manuals were designed for 2.45 hrs long lab classes (algebra-based and calculus-based). However, all the virtual labs in these three series can be easily simplified to align with conceptual type or short time physics lab classes as desired. All the virtual experiments were based on open education resource (OER) type simulations. Virtual experiments were designed to simulate in-person physical lab experiments. Student learning outcomes (understand, apply, analyze and evaluate) were studied with detailed lab reports per each experiment and end of the semester written exam which was based on experiments. Special emphasis was given to
    [Show full text]
  • Sea and Space Connections Astronauts Routinely Use Underwater Habitats to Train for Future Space Missions. There Are Ma
    Week 2: Sea and Space Connections Astronauts routinely use underwater habitats to train for future space missions. There are many parallels to living under the water and living in outer space. The most common two are weightlessness and living in an environment with different air pressures. While living in underwater habitats the air pressure is higher than normal, living in space there is almost a complete absence of air pressure or a vacuum, each environments have special considerations for those living there. Astronauts use training in the water to get used to being weightless while they are working. This may seem silly until someone actually tries to do physical work and every time they push against an object, they start floating backwards! The last training mission was performed in Aquarius off the coast of Key Largo, Fl. Below is a picture of the NEEMO XVIII group of astronauts that trained in Aquarius. Let us look at the importance air pressure and what exactly does weightlessness mean. Photo courtesy of NASA NEEMO Exercise 1: Potato Stabbing Materials: -potato -plastic straw (preferably not the bendy straws) If you use a bendy straw cut off the bendy part of the straw First have the students hypothesize what will happen when they stab the potato. Have the students try to stab a hole in the potato with the straw ends open. (The straw should collapse and not penetrate the potato). Now have the students hypothesize what is going to happen if they hold one end of the straw and stab the potato again. This time have the students stab the potato while sealing off the end of the potato with their thumb.
    [Show full text]
  • Marine Litter on the Floor of Deep Submarine Canyons Of
    Progress in Oceanography 134 (2015) 379–403 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes ⇑ Xavier Tubau a, Miquel Canals a, , Galderic Lastras a, Xavier Rayo a, Jesus Rivera b, David Amblas a a GRC Geociències Marines, Departament d’Estratigrafia, Paleontologia i Geociències Marines, Facultat de Geologia, Universitat de Barcelona, E-08028 Barcelona, Spain b Instituto Español de Oceanografía (IEO), C/Corazón de María, 8, E-28002 Madrid, Spain article info abstract Article history: Marine litter represents a widespread type of pollution in the World’s Oceans. This study is based on Received 14 November 2014 direct observation of the seafloor by means of Remotely Operated Vehicle (ROV) dives and reports litter Received in revised form 31 March 2015 abundance, type and distribution in three large submarine canyons of the NW Mediterranean Sea, namely Accepted 31 March 2015 Cap de Creus, La Fonera and Blanes canyons. Our ultimate objective is establishing the links between Available online 8 April 2015 active hydrodynamic processes and litter distribution, thus going beyond previous, essentially descriptive studies. Litter was monitored using the Liropus 2000 ROV. Litter items were identified in 24 of the 26 dives car- ried out in the study area, at depths ranging from 140 to 1731 m. Relative abundance of litter objects by type, size and apparent weight, and distribution of litter in relation to depth and canyon environments (i.e. floor and flanks) were analysed.
    [Show full text]
  • 1 What Is a Fluid?
    Physics 106 Lecture 13 Fluid Mechanics SJ 7th Ed.: Chap 14.1 to 14.5 • What is a fluid? • Pressure • Pressure varies with depth • Pascal’s principle • Methods for measuring pressure • Buoyant forces • Archimedes principle • Fluid dyypnamics assumptions • An ideal fluid • Continuity Equation • Bernoulli’s Equation What is a fluid? Solids: strong intermolecular forces definite volume and shape rigid crystal lattices, as if atoms on stiff springs deforms elastically (strain) due to moderate stress (pressure) in any direction Fluids: substances that can “flow” no definite shape molecules are randomly arranged, held by weak cohesive intermolecular forces and by the walls of a container liquids and gases are both fluids Liquids: definite volume but no definite shape often almost incompressible under pressure (from all sides) can not resist tension or shearing (crosswise) stress no long range ordering but near neighbor molecules can be held weakly together Gases: neither volume nor shape are fixed molecules move independently of each other comparatively easy to compress: density depends on temperature and pressure Fluid Statics - fluids at rest (mechanical equilibrium) Fluid Dynamics – fluid flow (continuity, energy conservation) 1 Mass and Density • Density is mass per unit volume at a point: Δm m ρ ≡ or ρ ≡ • scalar V V • units are kg/m3, gm/cm3.. Δ 3 3 • ρwater= 1000 kg/m = 1.0 gm/cm • Volume and density vary with temperature - slightly in liquids • The average molecular spacing in gases is much greater than in liquids. Force & Pressure • The pressure P on a “small” area ΔA is the ratio of the magnitude of the net force to the area ΔF P = or P = F / A ΔA G G PΔA nˆ ΔF = PΔA = PΔAnˆ • Pressure is a scalar while force is a vector • The direction of the force producing a pressure is perpendicular to some area of interest • At a point in a fluid (in mechanical equilibrium) the pressure is the same in h any direction Pressure units: 1 Pascal (Pa) = 1 Newton/m2 (SI) 1 PSI (Pound/sq.
    [Show full text]
  • The Fluid States
    CK-12 Physics Concepts - Intermediate Answer Key Chapter 11: The Fluid States 11.1 Pressure in Fluids Practice Questions 1. Why do the streams of water at the bottom of the bottle go the farthest? 2. Why does water stop flowing out of the top hole even before the water level falls below it? Answers 1. At the bottom of the bottle there is more water pushing down and therefore more pressure coming out of the holes. 2. As the water level falls there isn't as much water pushing down and therefore less pressure to push water out of the holes. Additional Practice Problems: Questions 1. Calculate the pressure produced by a force of 800. N acting on an area of 2.00 m2. 2. A swimming pool of width 9.0 m and length 24.0 m is filled with water to a depth of 3.0 m. Calculate pressure on the bottom of the pool due to the water. 3. What is the pressure on the side wall of the pool at the junction with the bottom of the pool in the previous problem? Answers 퐹 800푁 400푁 1. 푃 = ∶ 푃 = = = 400푃푎 퐴 2푚2 푚2 푘푔 푚 2. Using 퐹 = 푎ℎ푝 ∶ (9.0푚 ∗ 24.0푚) ∗ 3푚 ∗ 1000 ∗ 9.8 = ퟔ. ퟑ × ퟏퟎퟔ 푷풂 푚3 푠2 푘푔 푚 3. Using 푃 = 푝ℎ ∶ 1000 ∗ 9.8 ∗ 3.0푚 = 29400 푃푎 = ퟐ. ퟗퟒ × ퟏퟎퟒ 푷풂 푚3 푠2 1 Review Questions 1. If you push the head of a nail against your skin and then push the point of the same nail against your skin with the same force, the point of the nail may pierce your skin while the head of the nail will not.
    [Show full text]
  • The Effect of Apparent Molecular Weight and Components of Agar on Gel Formation
    Food Sci. Technol. Res., 7 (4), 280–284, 2001 The Effect of Apparent Molecular Weight and Components of Agar on Gel Formation Hisashi SUZUKI,1 Yoshinori SAWAI1 and Mitsuro TAKADA2 1Food Processing Technology Center, Gifu Prefectural Research Institute of Industrial Product Technology, 47, Kitaoyobi, Kasamatsu-cho, Hashima-gun, Gifu 501-6064, Japan 2Gifu Prefectural Institute of Health and Environmental Sciences, 1-1, Naka-fudogaoka, Kakamigahara city, Gifu 504-0838, Japan Received December 11, 2000; Accepted July 10, 2001 The relation between apparent molecular weight and physical properties of agar gel and sol were investigated. Agar was extracted from seven kinds of red seaweed, Gelidium, Pterocladia and Gracilaria, which were collected in dif- ferent seas. The apparent weight-average molecular weight (AMw) and apparent molecular weight distribution of agar were measured by a high temperature type gel permeation chromatograph. Gel strength and melting point of agar gel, and the viscosity of agar sol were measured. The gel strength of agar gel from each seaweed increased with increasing AMw, and it was found that 3,6-anhydro-L-galactose and sulfate group affected gel formation. These results were also suggested by endothermic peaks of differential scanning calorimetry accompanying the gel-to-sol transition. The melting point of agar gel and the viscosity of its sol also increased with increasing AMw. Keywords: agar, gel formation, apparent molecular weight Agar is a polysaccharide which is extracted with hot water weight. In the case of agar, since gelation of aqueous solution from a red seaweed such as Gelidium or Gracilaria species. It usually occurs at about 40 to 50˚C, measurement of the apparent consists of agarose and agaropectin.
    [Show full text]
  • Ornlkdiac-91 Ndp-056 Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the Rn Meteor Cruise 18/1 in the North Atla
    ORNLKDIAC-91 NDP-056 CARBON DIOXIDE, HYDROGRAPHIC, AND CHEMICAL DATA OBTAINED DURING THE RN METEOR CRUISE 18/1 IN THE NORTH ATLANTIC OCEAN (WOCE SECTION AlE, SEPTEMBER 1991) Contributed by Kenneth M. Johnson*, Bernd Schneider**, Lutger Mintrop***,and Douglas W. R. Wallace*, *Brookhaven National Laboratory Upton, New York, U.S.A. **Institut fur Ostseeforschung Rostock-Warnemunde, Germany ***Institutfur Meereskunde Kiel, Germany Prepared by Alexander Kozyr**** Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee, U.S.A. ****Energy, Environment, and Resources Center The University of Tennessee, Knoxville, Tennessee, U.S.A. Environmental Sciences Division Publication No. 4543 Date Published: July 1996 Prepared for the Global Change Research Program Environmental Sciences Division Office of Health and Environmental Research U.S. Department of Energy Budget Activity Numbers KP 05 02 00 0 and KP 05 05 00 0 Prepared by the Carbon Dioxide Information Analysis Center OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6335 managed by M LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-960R22464 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liabiiity or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process, or service by trade name, trademark, manufac- turer, or otherwise does not necessarily constitute or imply its endorsement, rrcom- mendktion, or favoring by the United States Government or any agency thereof.
    [Show full text]