Tim JONCKERS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TABLE 1 Studies of Antagonist Activity in Constitutively Active
TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic -
5D57818a190bc447075641e128
ChemComm View Article Online COMMUNICATION View Journal | View Issue Polymerase synthesis of oligonucleotides containing a Cite this: Chem. Commun., 2013, single chemically modified nucleobase for site-specific 49, 4652 redox labelling† Received 25th February 2013, Accepted 2nd April 2013 Petra Me´nova´,a Hana Cahova´,a Medard Plucnara,b Ludeˇk Havran,b bc ad DOI: 10.1039/c3cc41438h Miroslav Fojta* and Michal Hocek* www.rsc.org/chemcomm Enzymatic construction of single-nucleobase redox-labelled oligo- bioanalytical applications and that is why we report here a nucleotides was developed either based on polymerase incorpora- new general enzymatic methodology to prepare them. tion of a single modified nucleoside triphosphate (dNTP) followed The methodology was developed and tested for the synthesis by primer extension (PEX) with natural dNTPs or based on PEX of ssON probes bearing a single redox label3 – either an Creative Commons Attribution-NonCommercial 3.0 Unported Licence. with a biotinylated one-nucleotide overhang template, magneto- electroreducible 3-nitrophenyl group or electrooxidizable separation and the second PEX with a full-length template. 3-aminophenyl3b and ferrocenyl groups.3a Therefore, nitro- phenyl- (dNNO2TPs), aminophenyl- (dNNH2TPs) and ferrocenyl- Enzymatic synthesis of base-modified DNA and oligonucleo- ethynyl-modified dNTPs (dNFcTPs, Chart 1)3a,b,9 derived from tides (ONs) by polymerase incorporation of modified nucleo- all four nucleobases were tested and used as substrates for side triphosphates (dNTPs) is now an established method1 often polymerase incorporation. The modified dGXTPs were prepared used for fluorescence,2 redox,3 spin,4 barcode5 and reactive6 according to improved methods (see ESI†). Vent(exo-), Pwo and labelling, as well as for the protection of DNA.7 Primer extension KOD XL were tested as enzymes in this methodology. -
The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. -
SCNAC 2014 Program Monday, 9.6.2014 Chairman: Michal Hocek 8
SCNAC 2014 Program Monday, 9.6.2014 Chairman: Michal Hocek 8:30 8:50 M. Hocek Opening 8:50 9:30 PL 1 H. Sugiyama Chemical Biology that Controls DNA Structure and Function: DNA Origami and Artificial Genetic Switch 9:30 9:50 OC 1 A. Taladriz Sender Synthesis and interaction studies of cationic glyco-oligoamide DNA binders 9:50 10:10 OC 2 J. W. Park Fluorescence Modification of the AAAA (4A) Loop to Probe the Structural Transition of the i-Motif 10:10 10:40 Coffee Break Chairman: Andreas Marx 10:40 11:20 PL 2 A. Ono Syntheses and characterizations of DNA duplexes having metal ion mediated base pairs 11:20 11:40 OC 3 M. Etheve-Quelquejeu Peptidyl-RNA conjugates to explore non-ribosomal peptide synthesis in bacteria. 11:40 12:00 OC 4 J. Heemstra Harnessing RNA-Small Molecule Recognition for Covalent RNA Modification 12:00 12:20 OC 5 T. Lavergne Template assembled synthetic antiparallel G-quadruplex 12:20 12:40 OC 6 G. Hayashi Metal-mediated reactions to detect 5-methylcytosine and 5-hydroxymethylcytosine in DNA 12:40 14:20 Lunch Chairman: Hiroshi Sugiyama 14:20 15:00 PL 3 H. Sleiman Three-dimensional DNA structures: design and biological applications 15:00 15:20 OC 7 J. Riedl Site-specific labeling of DNA base modifications for amplification of DNA damage 15:20 15:40 OC 8 S. Sturla Synthetic nucleosides for probing stability and polymerase processing of DNA adducts 15:40 16:00 OC 9 I. Hirao Generation of high affinity DNA aptamers by the expansion of the genetic alphabet 16:00 16:30 Coffee Break Chairman: Annemieke Madder 16:30 17:10 PL 4 O. -
Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0 -
(12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al. -
2‐Substituted Datp Derivatives As Building Blocks for Polymerase
Angewandte Communications Chemie International Edition: DOI: 10.1002/anie.201609007 DNA Modification German Edition: DOI: 10.1002/ange.201609007 2-Substituted dATP Derivatives as Building Blocks for Polymerase- Catalyzed Synthesis of DNA Modified in the Minor Groove Jn Matyasˇovsky´, Pavla Perlkov, Vincent Malnuit, Radek Pohl, and Michal Hocek* Abstract: 2’-Deoxyadenosine triphosphate (dATP) derivatives polymerases, whereas 2-arylamino-dATP derivatives were [16] bearing diverse substituents (Cl, NH2,CH3, vinyl, ethynyl, and found to act as polymerase inhibitors. The minor groove phenyl) at position 2 were prepared and tested as substrates for sites of the nucleobases are difficult to modify since they are DNA polymerases. The 2-phenyl-dATP was not a substrate for crucial both for Watson–Crick base pairing and for key minor- DNA polymerases, but the dATPs bearing smaller substituents groove interactions with DNA polymerase that are important were good substrates in primer-extension experiments, produc- for extension of the chain.[17] On the other hand, 2-ethynyl- ing DNA substituted in the minor groove. The vinyl-modified pyridone-C-nucleotide incorporated into DNA[18] formed DNA was applied in thiol–ene addition and the ethynyl- a stable base pair with adenine, and 2-(imidazolylalkylami- modified DNA was applied in a CuAAC click reaction to form no)purines in ONs also stabilized duplexes.[19] Because the DNA labelled with fluorescent dyes in the minor groove possibility of minor-groove base labelling would be attractive for many prospective -
44Th National Organic Chemistry Symposium University of Maryland
44th National Organic Chemistry Symposium University of Maryland College Park, Maryland June 28 - July 2, 2015 44th National Organic Symposium 2015 – University of Maryland, College Park, USA 44th National Organic Symposium University of Maryland College Park, Maryland USA June 28-July 2, 2015 Table of Contents Welcome 3 Sponsors 4 Exhibitors 5 Division of Organic Chemistry Mission Statement 6 Division of Organic Chemistry Video Contest 7 44th National Organic Symposium Schedule 8-10 DOC Executive Committee Members 11 Symposium Organizers 12 The Roger Adams Award in Organic Chemistry 13 Plenary Lecturers 14-17 Plenary Lectures Abstracts 18-36 DOC Graduate Research and Travel Fellows 37-41 Poster Authors and Titles 42-55 Activities 56-57 Campus Map 58 Notes 59 2 44th National Organic Symposium 2015 – University of Maryland, College Park, USA Welcome On behalf of the Executive Committee of the Division of Organic Chemistry of the American Chemical Society and the Department of Chemistry at the University of Maryland, College Park, we welcome you to the 44th National Organic Chemistry Symposium (NOS). The goal of this biennial event is to present a roster of distinguished speakers that represent the breadth and creative advances of organic chemistry worldwide. The first National Organic Chemistry Symposium was held December 1925 in Rochester NY under the auspices of the Rochester Section of the Division of Organic Chemistry. Subsequent meetings were held every two years until WWII. The symposia resumed in 1947 in Boston and have been held biennially since. The National Organic Chemistry Symposium is the premier event sponsored by the Division of Organic Chemistry. -
Molecular Machine Learning Receiving Her A.B
Organizer: Prof. Dr. Frank Glorius [email protected] Co-Organizer: Philipp Pflüger [email protected] University of Münster Correnstraße 40 Institute of Organic Chemistry 48149 Münster 2nd International Mini-Symposium Speakers Schedule: Thursday, January 14th 2021 on Abigail Doyle is the A. Barton Hepburn Professor of Chemistry in the 3:00 pm Introduction Chemistry Department at Princeton University. She obtained her 3:10 pm Abigail Doyle Ph.D. in catalysis and physical organic chemistry at Harvard University in 2008 under the direction of Prof. Eric Jacobsen after Machine Learning for Experimental Synthetic Chemists Molecular Machine Learning receiving her A.B. and A.M. in chemistry and chemical biology from Numerous disciplines, such as image recognition and machine translation, have been revolutionized Harvard in 2002. She joined at Princeton University in 2008 and is by using machine learning (ML) to leverage big data. In organic synthesis, providing accurate currently a co-PI for the NSF CCI Center for Computer Assisted chemical reactivity prediction with ML models could assist chemists with reaction prediction, optimization, and mechanistic interrogation. This talk will cover my group’s efforts on experimental th Synthesis and the DOE EFRC Bioinspired Light-Escalated Chemistry. data collection and the quest to expand its availability and limit its bias for data science application; January 14 2021 3:00 pm (utc +1) feature engineering that may extend common intuition about the underlying chemistry; model assessments in the regime of small to medium size reaction datasets; and opportunities arising from accurate model predictions and their mechanistic interpretation. Klaus-Robert Müller (Ph.D. -
WO 2007/061529 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 31 May 2007 (31.05.2007) PCT WO 2007/061529 Al (51) International Patent Classification: GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, A61K 9/14 (2006.01) KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, (21) International Application Number: NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, PCT/US2006/040197 SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (22) International Filing Date: 13 October 2006 (13.10.2006) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (26) Publication Language: English ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV,MC, NL, PL, PT, (30) Priority Data: RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, 11/282,507 18 November 2005 (18.1 1.2005) US GN, GQ, GW, ML, MR, NE, SN, TD, TG). (71) Applicant (for all designated States except US): SCI- Declarations under Rule 4.17: DOSE PHARMA INC. -
Stembook 2018.Pdf
The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
Synthesis and Cytotoxic and Antiviral Activity Profiling of All‐Four
Full Paper Chemistry—A European Journal doi.org/10.1002/chem.202001124 & DrugDiscovery |Hot Paper| Synthesis and Cytotoxic and Antiviral Activity Profiling of All-Four Isomeric Series of Pyrido-Fused 7-Deazapurine Ribonucleosides Lucia Veselovskµ,[a] Natµlie Kudlovµ,[b, c] SonˇaGurskµ,[b, c] Barbora Lisˇkovµ,[b] Martina Medvedíkovµ,[b] Ondrˇej Hodek,[a] Eva Tlousˇtˇovµ,[a] NemanjaMilisavljevic,[a, d] Michal Tichy´,[a] Pavla Perlíkovµ,[a] HelenaMertlíkovµ-Kaiserovµ,[a] Jana Trylcˇovµ,[a] RadekPohl,[a] Blanka Klepetµrˇovµ,[a] Petr Dzˇubµk,[b, c] MariµnHajdfflch,[b, c] and Michal Hocek*[a, d] Abstract: All four isomeric series of novel 4-substituted The most active werepyrido[4’,3’:4,5]pyrimidine nucleosides pyrido-fused 7-deazapurine ribonucleosides possessing the bearing MeO, NH2,MeS, or CH3 groups at position 4, which pyridine nitrogen atom at different positions were designed showed submicromolar cytotoxic effects and good selectivi- and synthesized. The total synthesis of each isomeric fused ty for cancer cells. The mechanism involved activation by heterocycle through multistep heterocyclizationwas fol- phosphorylation and incorporation to DNA where the pres- lowed by glycosylation and derivatization at position 4by ence of the modified ribonucleosides causes double-strand cross-coupling reactions or nucleophilic substitutions. All breaksand apoptosis. compoundswere tested for cytostatic and antiviral activity. Introduction well as of emerging new viruses,[4] justifiesthe continuous in- terest in the development of other novel nucleoside deriva- Nucleoside derivatives or analogues modified at the heterocy- tives with potential antiviral or cytostatic effects. Particularly in- clic base are an important class of molecules with wide range teresting are modified pyrrolo[2,3-d]pyrimidine(7-deazapurine) of biological activities.