2. Artificial Nucleosides in Medicinal Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Stambasky, Jan (2008) Stereoselective synthesis of artificial C- nucleosides. PhD thesis. http://theses.gla.ac.uk/198/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] A thesis submitted in part fulfilment of the requirements of the degree of Doctor of Philosophy Stereoselective Synthesis of Artificial C-Nucleosides Jan Štambaský University of Glasgow October 2007 2 Abstract Reported herein is a conceptually new synthetic route to 1’-aryl-C-ribofuranosides and their 2’,3’-didehydro-2’,3’-dideoxy (D4) analogues. We have successfully implemented a divergent synthetic route capable to reach two important, biologically significant groups of compounds. The first two strategic transformations are common for both families of target compounds (asymmetric allylic substitution, and ring-closing metathesis). D4 C-nucleoside analogues are synthesised in a three-step procedure, and 1’-aryl ribofuranoses are constructed in a four-step procedure. O Ar HO TBSO OH 233a 235b up to 46% >99% ee >99% ee >99% de + O OBoc Ar HO Ar HO OH 267 1o >99% ee up to 42% >99% ee >99% de The target compounds were prepared in an excellent enantio- and diastereopurity, in good overall yields. The yield in the synthesis of 1’-aryl-2’,3’-didehydro- 1’,2’,3’-trideoxyribofunanoses is up to 46% over all the reaction steps. The overall yield of the 1’-arylribofuranoses is up to 42%. All the strategic transformations rely on catalytic oranometallic reactions employing group 8a transition metals. All the reactions have been optimized with a view of maximal atom efficiency and environmental impact. In summary, our new methodology is perfectly suitable for the synthesis of 1’-arylribofuranoses, and their D4-analogues, bearing non-ortho-substituted aromatics and hereroaromatics, lacking coordinating (nitrogen) substituents or heteroatoms. In this point of view the most promising target application is the synthesis of lipophilic isosters of ribonucleosides for the RNA-studies. 3 Acknowledgement First of all I would like to thank my principal supervisor Prof. Pavel Kočovský. I would like to thank to my other supervisors Dr. Andrei. V. Malkov and Dr. Andrew Sutherland. Their continuous support of this project is greatly appreciated. I would like to thank Prof. Michal Hocek at the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. His continuous interest in this project and many valuable discussions and advice regarding chemistry and general aspects of nucleosides and nucleic acids are very much appreciated. I would like to express my gratitude to the University of Glasgow, for the funding of this project. I am very grateful to Dr. Stephen N. Falling at Eastman Chemical Company, Kingsport, TN, USA. The generous gift of (R)-2-buten-1,2-diol and (S)-2-buten-1,2-diol has been very welcomed and is greatly appreciated. I am very grateful to all members of staff who have provided scientific and technical support; Dr. Andy Parkin (X-Ray), Mr. Jim Tweedie (mass spectroscopy), Mr. Ted Easdon and Mr. Alex Burns (chemistry store), Mr. William McCormack (glassblowing workshop), Mr. Stuart Mackay (IT support), Mr Jim Gall and Dr. David Adam (nuclear magnetic resonance), and Ms. Kim Wilson (microanalysis). I would like to thank all the members of our research team, present and past in the years 2004-2007: Dr. Sigitas Stončius, Dr. Filip Teplý, Dr. Angus J. P. Stewart-Liddon, Dr. Mary Margaret Westwater, Dr. Zainaba Bourhani, Dr. Marina Fruilo, Dr. John Hand, Dr. Pedro Ramírez López, Dr. Patrick Gunning, Dr. Linnea Soler, Ms. Květoslava Vranková, Mr. Kenneth MacDougall, Ms. Claire MacDonald, Ms. Louise E. Czemerys, Mr. Grant McGeoch, Mr. Mikhail Kabeshov, and Mr. Frédéric Friscourt. 4 Table of Contents Abbreviations....................................................................................................6 Preface...............................................................................................................9 1. Artificial Nucleosides in Chemical Biology ............................................10 1.1. Artificial Base-Pairs Based on Hydrogen-Bonding......................................................10 1.2. Artificial Base-Pairs Based on Hydrophobic Interactions............................................16 1.3. Artificial Base-Pairs Based on Metal Bridges..............................................................18 1.4. Artificial Base-Pairs Based on Covalent Cross-Linking...............................................20 2. Artificial Nucleosides in Medicinal Chemistry .......................................20 3. Synthetic Routes to C-Nucleosides ........................................................23 3.1. Construction of an Aglycon Unit upon a Carbohydrate Moiety....................................24 3.1.1. Introduction of the CN Group............................................................. 24 3.1.2. Wittig-Type Reaction.......................................................................... 30 3.1.3. Cycloaddition...................................................................................... 33 3.1.4. Other Methods of Construction of an Aglycon Unit........................... 39 3.2. Construction of a Carbohydrate Moiety upon an Aglycon Unit....................................42 3.3. Direct Coupling of a Carbohydrate Moiety with a Preformed Aglycon Unit .................48 3.3.1. Nucleophilic Addition to an Aldehyde Function of a Carbohydrate .. 49 3.3.2. Nucleophilic Addition to 1,2-Anhydrofuranoses ................................ 51 3.3.3. Nucleophilic Addition to Halogenoses ............................................... 52 3.3.4. Nucleophilic Addition to Furanolactones........................................... 54 3.3.5. Heck Coupling.................................................................................... 57 3.3.6. Coupling Mediated by Lewis Acids .................................................... 59 3.4. Chemical Modification of Existing C-Nucleosides.......................................................63 4. Novel Synthetic Approach to C-Nucleosides.........................................70 4.1. General Considerations..............................................................................................70 4.2. Retrosynthetic Analysis ..............................................................................................71 4.3. Metal-Catalysed Asymmetric Allylic Substitution ........................................................72 4.4. Ring-Closing Metathesis (RCM) .................................................................................77 4.5. Vicinal Dihydroxylation................................................................................................78 5. Results and Discussion ...........................................................................81 5.1. Linear Carbonates ......................................................................................................81 5.1.1. Boc Derivatization.............................................................................. 82 5.1.2. Suzuki-Miyaura Coupling................................................................... 83 5 5.1.3. Alkene Cross Metathesis..................................................................... 91 5.1.4. Horner-Wadsworth-Emmons Reaction............................................... 93 5.1.5. Conclusions......................................................................................... 94 5.2. Branched Carbonates.................................................................................................95 5.2.1. Racemic Branched Carbonates .......................................................... 95 5.2.2. Non-Racemic Branched Carbonates.................................................. 98 5.2.3. Conclusions....................................................................................... 101 5.3. Iridium-Catalysed Asymmetric Allylic Substitution (AAS)..........................................101 5.3.1. Synthesis of Protected Butenediols for AAS ..................................... 101 5.3.2. Synthesis of Ligands for AAS............................................................ 103 5.3.3. Optimization of the AAS Conditions................................................. 104 5.3.4. Conclusions....................................................................................... 114 5.4. Optimization of the Final Reaction-Sequence Steps and Completion of the Synthesis of Artificial C-Nucleosides and Their Analogues.......................................114 5.4.1. Proof of the Synthetic Concept Using Diastereoisomeric Mixtures ............................................................................................ 114 5.4.2. Synthesis of Diallylethers................................................................. 116 5.4.3. Synthesis of Artificial 2’,3’-Didehydro-2’,3’-Dideoxy- C-nucleosides ..................................................................................