FAU Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

FAU Institutional Repository FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: © 1989 Marine Biological Association of the United Kingdom. This manuscript is an author version with the final publication available and may be cited as: Larson, R. J., Mills, C. E., & Harbison, G. R. (1989). In situ foraging and feeding behavior of narcomedusae (Cnidaria: Hydrozoa). Journal of the Marine Biological Association of the United Kingdom 69(4), 785-794. doi: 10.1017/S002531540003215X {yjO J. mar. bioI. Ass. U.K. (1989), 69, 785-794 785 Printed in Great Britain IN SITU FORAGING AND FEEDING BEHAVIOUR OF NARCOMEDUSAE (CNIDARIA: HYDROZOA) RONALD J. LARSON*, CLAUDIA E. MILLSt AND G. RICHARD HARBISON* 'Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, Florida 34946 USA tFriday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, Washington 98250, USA (Figure 1) Narcomedusae are a small and mostly oceanic group of hydromedusae whose tentacle morphology and comportment sets them off behaviourally and perhaps ecologically from most other medusae. Their tentacles are relatively few in number (2-40), stiff, and non­ contractile, with points of insertion located well above the bell margin. Eleven species representing eight narcomedusan genera (Aegina, Aeginura,an undescribed aeginid, Cunina, Pegantha, Solmaris, Solmissus, and Solmundello) were observed and collected in situ in the NW Atlantic, Arctic and Antarctic, using scuba and manned submersibles. In life, the tentacles of narcomedusae are nearly always held upwards over the bell or projected laterally. The major prey were other gelatinous zooplankton, especially salps and doliolids. In the laboratory, these relatively large prey were caught on the tentacles which bend inward and coil at the tips to bring food to the mouth. By extending the tentacles perpendicular to the swimming path, these medusae achieve a relatively large encounter area, thus increasing the probability of contact with prey, for the amount of protein invested in tentacles. INTRODUCTION Narcomedusae are common oceanic hydromedusae that have been little studied because of their inaccessibility. Although there are only about 50 species, some of these are widely distributed (e.g. Aegina citrea Eschscholtz, Aeginura grimaldii Maas, Pegantha clara R.P. Bigelow, Cunina octonaria McCrady, Solmtssus incisa (Fewkes), Solmissus marshalli Agassiz & Mayer and Solmundeila biientaculaia (Quoy & Gaimard) (Kramp, 1961). For example,S. biteniaculata occurs in the Antarctic, tropics and boreal regions of the world oceans, and at shallow and great depths. Although most species are found above 1000 m, some species (e.g. Solmissus spp.) occur at greater depths [Hartman & Emery, 1956; Peres, 1958, 1959 (as 501maris)J. Narcomedusae are holoplanktonic medusae. In some species (e.g. Cunina peregrina, Pegantha triloba) the larvae are known to parasitize other medusae (Bouillon, 1987), whereas other species develop non-parasitically in the plankton. The morphology and histology of narcomedusae have been described by Vanhoffen (1908), Bigelow (1909), Russell (953), and others. They typically have a fragile lens- or dome-shaped umbrella a 786 RJ. LARSON, C.E. MILLSAND G.R. HARBISON 1-10em in diameter that is generally transparent, but may be pigmented in mesopelagic species (e.g. Aeginuragrimaldii). Narcomedusae have from 2 to 40 solid tentacles project­ ing from the bell margin. The non-extensile tentacles are equally spaced around the bell and may be equal in length to the bell radius or up to about twice as long as the bell diameter. Grooves extending downward from the tentacles allow each tentacle to bend inward across the lower portion of the bell, bringing attached prey into contact with the circular mouth. The stomach is flat and broad, covering most of the subumbrella surface and can accommodate large prey. The cnidome of narcomedusae has been described for only a few species. Where known, it consists exclusively of apotrichous isorhizas, which are sometimes most abundant on the upper (abaxial) side of the tentacles and can have an extremely long (9 mm) thread (Mackie & Mackie, 1963; Mills & Miller, 1984; Mills & Goy, 1988; Purcell & Mills, 1988). Because most of these medusae are oceanic, fragile, and transparent, they have rarely been observed alive in an undamaged state. Bigelow (909) noted that freshly netted specimens had tentacles that extended stiffly outwards. He also remarked that some species were powerful and active swimmers, while others were inactive owing to reduced swimming muscles. Gladfelter (973), who studied the locomotion of Solmissus marshalli, noted that the bell was divided into two zones, a rigid central disc and a flexible lateral wall. Upon contraction of the circular swimming muscle, the lateral wall bends inward and upward, providing propulsive thrust. Madin (988) described ten­ tacle postures of three narcomedusan genera observed by scuba diving or from sub­ mersibles. Mills & Goy (988) described very active swimming and extensive vertical migration of Solmissus albescens (Cegenbaur), as seen from a submersible. Narcomedusae can be abundant at mesopelagic depths. In fact, they were among the first mid water animals to be photographed in situ. Emery (952) and Hartman & Emery (956) photographed many Solmissus incisa off California using a remote 'benthograph' camera. One of their photographs shows five specimens swimming in various direc­ tions with the tentacles arched outwards (Hartman & Emery, 1956, plate 1, incorrectly identified as a trachyline medusa). Other photographs of narcomedusae have been taken by manned submersibles. Bernard (958), Peres 0958, 1959), Tregouboff (1959), Houot (960), and Laban et al. (963) observed and photographed several narcomedu­ san species in the Mediterranean and off Japan, as deep as 2000 rn, from the French bathyscaphe FNRS III. Most of their observations concerned vertical distributions but they did note that the tentacles of Solmissus albescens and Aegina citrea (incorrectly identified as Aeginopsis Iaureniii Brandy) are usually held stiffly outward or upward from the bell. Benovic (1973) and Mills & Goy (1988) have described the 300-600 m (50­ 144 m h') diel vertical migration of S. albescens in the southern Adriatic and Ligurian Sea in the Mediterranean. Mackie & Mackie (1963), at Friday Harbor, Washington, observed Solmissus marshalli, a weak swimmer that holds its tentacles either up over the bell or laterally from the sides. One specimen that was maintained in an aquarium, ingested a hydromedusa (Euphysa sp.). Mills observed a S. marshalli in situ at the same location feeding on Euphysa sp. FEEDING AND FORAGING IN NARCOMEDUSAE 787 Mills & Miller (1984) have described predation on Aegina citrea by the ctenophore Haeckelia rubra (Kolliker), In the same paper they report feeding by the narcomedusa Cunina sp. on H. rubra in the laboratory. Mills & Goy (988) reported in situ observations from the submersible Cyana of several Solmissus albescens in the Ligurian Sea with the pteropod Cavolinia sp. in their guts, and of one S. albescens capturing, but subsequently dropping, the ctenophore Bathocyroe sp. In this paper, we describe swimming and tentacle posture, feeding, and diet for representatives of eight genera of narcomedusae that have been observed, photo­ graphed, and collected using scuba and manned submersibles in the western North Atlantic Ocean and elsewhere. .. METHODS Some of the medusae were observed in situ and were collected with the aid of scuba equipment, using 'blue water' diving techniques (Madin et a1., 1986) during a series of scuba transects made on a trans-Atlantic cruise of the RV 'Alantis' I [cruise no. 101, June-July 1978: see Bidigare & Biggs (980) for cruise track]. Other medusae, were observed in the Antarctic (McMurdo Sound) in December 1987 and in the Arctic (between Iceland and Spitsbergen) during August 1988. For observations of feeding behaviour, medusae were collected individually in jars and were maintained in ship­ board aquaria at near sea-surface temperatures (see Table 1). Mesopelagic narcomedusae were observed, photographed, video recorded, and col­ lected using the manned submersibles 'Johnson-Sea-Link' I and II [equipment fully described by Youngbluth (1984)] during cruises off the Bahamas in October 1984 and October 1988, off New England in September 1986 and August 1987, and off the Dry Tortugas in August September 1987. RESULTS In situ observations Representatives of eight narcomedusan genera (Aegina, Aeginura, an undescribed aeginid, Cunina, Pegantha, Solmaris, Solmissus, and Solmundella) were observed in situ and collected (Table 1). Narcomedusae in the sea were oriented in apparently random directions, but were usually swimming. Bell pulsation rates for epipelagic medusae were generally an inverse function of size, ranging from 0·08-0·17 Hz (pulsations per second) in relatively large (>30 mm bell diameter) sluggish species (Cunina duplicata and Cunina proboscidea), to 0·75-1·67 Hz in small medusae 00-20 mm bell diameter) (Aegina citrea and Solmaris corona). However, the small· epipelagic species, Cunina globosa, was relatively inactive, with pulsation rates of about 0·33-0·50 Hz. Pulsation rates of mesopelagic species ranged from 0·31-0·79 Hz for Solmissus spp. (bell diameter 30-60 mm) to 0·50-1·00 Hz for Aeginuragrimaldii (bell diameter 20-30mm) to 1·25 Hz for an undescribed aeginid (bell diameter
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
    The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions.
    [Show full text]
  • Genetic Identification of Octopodidae Species in Southern California Seafood Markets: Species Diversity and Resource Implications
    Genetic Identification of Octopodidae Species in Southern California Seafood Markets: Species Diversity and Resource Implications Chase Martin Center for Marine Biodiversity and Conservation Scripps Institution of Oceanography University of California San Diego Abstract Various species of Octopodidae are commonly found in seafood markets throughout Southern California. Most of the octopus available for purchase is imported, with the majority of imports coming from various Asian nations. Despite the diversity of global octopus species, products are most commonly labeled as simply “octopus,” with some distinctions being made in size, e.g., “baby” or “little octopus.” In efforts to characterize species diversity, this study genetically tested 59 octopus samples from a variety of seafood markets in Los Angeles, Orange, and San Diego Counties. Universal 16S rRNA primers (ref) and CO1 primers developed by Folmer et al. (1994) were used for PCR amplification and sequencing of mtDNA. In all, 105 sequences were acquired. Seven species were identified with some confidence. Amphioctopus aegina was the most prevalent species, while two additional species were undetermined. Little available data exists pertaining to octopus fisheries of the countries of production of the samples. Most available information on octopus fisheries pertains to those of Mediterranean and North African nations, and identifies the Octopus vulgaris as the fished species. Characterizing octopus diversity in Southern California seafood markets and assessing labeling and countries of production provides the necessary first step for assessing the possible management implications of these fisheries and seafood supply chain logistics for this group of cephalopods. Introduction Octopuses are exclusively marine cephalopod mollusks that form the order Octopoda.
    [Show full text]
  • Sub-Regional Report On
    EP United Nations Environment UNEP(DEPI)/MED WG 359/Inf.10 Programme October 2010 ENGLISH ORIGINAL: ENGLISH MEDITERRANEAN ACTION PLAN Tenth Meeting of Focal Points for SPAs Marseille, France 17-20 May 2011 Sub-regional report on the “Identification of important ecosystem properties and assessment of ecological status and pressures to the Mediterranean marine and coastal biodiversity in the Adriatic Sea” PNUE CAR/ASP - Tunis, 2011 Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2011 United Nations Environment Programme 2011 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 – 1080 Tunis Cedex E-mail : [email protected] The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas by: Bayram ÖZTÜRK , RAC/SPA International consultant With the participation of: Daniel Cebrian. SAP BIO Programme officer (overall co-ordination and review) Atef Limam. RAC/SPA International consultant (overall co-ordination and review) Zamir Dedej, Pellumb Abeshi, Nehat Dragoti (Albania) Branko Vujicak, Tarik Kuposovic (Bosnia ad Herzegovina) Jasminka Radovic, Ivna Vuksic (Croatia) Lovrenc Lipej, Borut Mavric, Robert Turk (Slovenia) CONTENTS INTRODUCTORY NOTE ............................................................................................ 1 METHODOLOGY ....................................................................................................... 2 1. CONTEXT ..................................................... ERREUR ! SIGNET NON DÉFINI.4 2. SCIENTIFIC KNOWLEDGE AND AVAILABLE INFORMATION........................ 6 2.1. REFERENCE DOCUMENTS AND AVAILABLE INFORMATION ...................................... 6 2.2.
    [Show full text]
  • The Form and Function of the Hypertrophied Tentacle of Deep-Sea Jelly Atolla Spp
    The Form and Function of the Hypertrophied Tentacle of Deep-Sea Jelly Atolla spp. Alexis Walker, University of California Santa Cruz Mentors: Bruce Robison, Rob Sherlock, Kristine Walz, and Henk-Jan Hoving, George Matsumoto Summer 2011 Keywords: Atolla, tentacle, histology, SEM, hypertrophied ABSTRACT In situ observations and species collection via remotely operated vehicle, laboratory observations, and structural microscopy were used with the objective to shed light on the form and subsequently the function of the hypertrophied tentacle exhibited by some Atolla species. Based upon the density of nematocysts, length, movement, and ultrastructure of the hypertrophied tentacle, the function of the tentacle is likely reproductive, sensory, and/or utilized in food acquisition. INTRODUCTION The meso- and bathypelagic habitats are of the largest and least known on the planet. They are extreme environments, characterized by high atmospheric pressure, zero to low light levels, scarcity of food sources, and cold water that is low in oxygen content. Animals that live and even thrive in these habitats exhibit unique characteristics enabling them to survive in such seemingly inhospitable conditions. One such organism, the deep- sea medusa of the genus Atolla, trails a singular elongated tentacle, morphologically 1 distinct from the marginal tentacles. This structure, often referred to as a trailing or hypertrophied tentacle, is unique within the cnidarian phylum. Ernst Haeckel described the first species of this deep pelagic jelly, Atolla wyvillei, during the 1872-1876 HMS Challenger Expedition. In the subsequent 135 years, the genus Atolla has expanded to several species not yet genetically established, which have been observed in all of the worlds oceans (Russell 1970).
    [Show full text]
  • A Case Study with the Monospecific Genus Aegina
    MARINE BIOLOGY RESEARCH, 2017 https://doi.org/10.1080/17451000.2016.1268261 ORIGINAL ARTICLE The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae) Dhugal John Lindsaya,b, Mary Matilda Grossmannc, Bastian Bentlaged,e, Allen Gilbert Collinsd, Ryo Minemizuf, Russell Ross Hopcroftg, Hiroshi Miyakeb, Mitsuko Hidaka-Umetsua,b and Jun Nishikawah aEnvironmental Impact Assessment Research Group, Research and Development Center for Submarine Resources, Japan Agency for Marine- Earth Science and Technology (JAMSTEC), Yokosuka, Japan; bLaboratory of Aquatic Ecology, School of Marine Bioscience, Kitasato University, Sagamihara, Japan; cMarine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan; dDepartment of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; eMarine Laboratory, University of Guam, Mangilao, USA; fRyo Minemizu Photo Office, Shimizu, Japan; gInstitute of Marine Science, University of Alaska Fairbanks, Alaska, USA; hDepartment of Marine Biology, Tokai University, Shizuoka, Japan ABSTRACT ARTICLE HISTORY Online biogeographic databases are increasingly being used as data sources for scientific papers Received 23 May 2016 and reports, for example, to characterize global patterns and predictors of marine biodiversity and Accepted 28 November 2016 to identify areas of ecological significance in the open oceans and deep seas. However, the utility RESPONSIBLE EDITOR of such databases is entirely dependent on the quality of the data they contain. We present a case Stefania Puce study that evaluated online biogeographic information available for a hydrozoan narcomedusan jellyfish, Aegina citrea. This medusa is considered one of the easiest to identify because it is one of KEYWORDS very few species with only four large tentacles protruding from midway up the exumbrella and it Biogeography databases; is the only recognized species in its genus.
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • First Record of the Mesopelagic Narcomedusan Genus Solmissus Ingesting a fish, with Notes on Morphotype Diversity in S
    Plankton Benthos Res 13(2): 41–45, 2018 Plankton & Benthos Research © The Plankton Society of Japan First record of the mesopelagic narcomedusan genus Solmissus ingesting a fish, with notes on morphotype diversity in S. incisa (Fewkes, 1886) 1,2, 1,2 MITSUKO HIDAKA-UMETSU * & DHUGAL J. LINDSAY 1 School of Marine Bioscience, Kitasato University, Sagamihara, Kanagawa, Japan 2 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan Received 8 November 2017; Accepted 25 January 2018 Responsible Editor: Jun Nishikawa Abstract: An individual narcomedusa assignable to Solmissus incisa sensu lato was observed having ingested a fish at 573 m depth near the southeast slope of the Kaikata seamount, Japan. Solmissus is a very common deep-sea narco- medusan genus that is widely considered to be a predator specializing on gelatinous plankton. Several cryptic species, with differences in the number of tentacles and form of manubrial pouches, are thought to be included in the nominal species Solmissus incisa. Therefore, the present study gives a short description of the morphotype of Solmissus incisa s.l. observed with a fish in its stomach, as well as several individuals of the same morphotype that had ingested gelati- nous prey. Key words: Izu-Ogasawara Islands, mesopelagic, piscivorous, Solmissus incisa, stomach contents Introduction Materials and Methods The common midwater narcomedusan genus Solmissus ROV Hyper-Dolphin video footage from a Super-HARP is widely regarded to be a predator specializing on ge- high-definition video camera (Lindsay 2003) were ana- latinous zooplankton prey (e.g. Raskoff 2002). The feed- lyzed for Dive 81 (Southeast slope of Kaikata Seamount, ing behaviour and stomach contents of 82 individuals of launched at 26°42.168′N, 141°06.425′E on 7 March 2002) Solmissus were reported by Raskoff (2002), based on ROV and Dive 83 (Northeast slope of Sumisu Caldera, launched observations in the Monterey Bay, California, and that at 31°29.070′N, 140°09.198′E on 9 March 2002).
    [Show full text]
  • Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
    W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included.
    [Show full text]
  • Articles and Plankton
    Ocean Sci., 15, 1327–1340, 2019 https://doi.org/10.5194/os-15-1327-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The Pelagic In situ Observation System (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna Henk-Jan Hoving1, Svenja Christiansen2, Eduard Fabrizius1, Helena Hauss1, Rainer Kiko1, Peter Linke1, Philipp Neitzel1, Uwe Piatkowski1, and Arne Körtzinger1,3 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 2University of Oslo, Blindernveien 31, 0371 Oslo, Norway 3Christian Albrecht University Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany Correspondence: Henk-Jan Hoving ([email protected]) Received: 16 November 2018 – Discussion started: 10 December 2018 Revised: 11 June 2019 – Accepted: 17 June 2019 – Published: 7 October 2019 Abstract. There is a need for cost-efficient tools to explore 1 Introduction deep-ocean ecosystems to collect baseline biological obser- vations on pelagic fauna (zooplankton and nekton) and es- The open-ocean pelagic zones include the largest, yet least tablish the vertical ecological zonation in the deep sea. The explored habitats on the planet (Robison, 2004; Webb et Pelagic In situ Observation System (PELAGIOS) is a 3000 m al., 2010; Ramirez-Llodra et al., 2010). Since the first rated slowly (0.5 m s−1) towed camera system with LED il- oceanographic expeditions, oceanic communities of macro- lumination, an integrated oceanographic sensor set (CTD- zooplankton and micronekton have been sampled using nets O2) and telemetry allowing for online data acquisition and (Wiebe and Benfield, 2003). Such sampling has revealed a video inspection (low definition).
    [Show full text]
  • Biogeography of Jellyfish in the North Atlantic, by Traditional and Genomic Methods
    Earth Syst. Sci. Data, 7, 173–191, 2015 www.earth-syst-sci-data.net/7/173/2015/ doi:10.5194/essd-7-173-2015 © Author(s) 2015. CC Attribution 3.0 License. Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods P. Licandro1, M. Blackett1,2, A. Fischer1, A. Hosia3,4, J. Kennedy5, R. R. Kirby6, K. Raab7,8, R. Stern1, and P. Tranter1 1Sir Alister Hardy Foundation for Ocean Science (SAHFOS), The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3University Museum of Bergen, Department of Natural History, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway 4Institute of Marine Research, P.O. Box 1870, 5817 Nordnes, Bergen, Norway 5Department of Environment, Fisheries and Sealing Division, Box 1000 Station 1390, Iqaluit, Nunavut, XOA OHO, Canada 6Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK 7Institute for Marine Resources and Ecosystem Studies (IMARES), P.O. Box 68, 1970 AB Ijmuiden, the Netherlands 8Wageningen University and Research Centre, P.O. Box 9101, 6700 HB Wageningen, the Netherlands Correspondence to: P. Licandro ([email protected]) Received: 26 February 2014 – Published in Earth Syst. Sci. Data Discuss.: 5 November 2014 Revised: 30 April 2015 – Accepted: 14 May 2015 – Published: 15 July 2015 Abstract. Scientific debate on whether or not the recent increase in reports of jellyfish outbreaks represents a true rise in their abundance has outlined a lack of reliable records of Cnidaria and Ctenophora. Here we describe different jellyfish data sets produced within the EU programme EURO-BASIN.
    [Show full text]