NIH Public Access Author Manuscript Bioorg Med Chem

Total Page:16

File Type:pdf, Size:1020Kb

NIH Public Access Author Manuscript Bioorg Med Chem NIH Public Access Author Manuscript Bioorg Med Chem. Author manuscript; available in PMC 2013 July 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Bioorg Med Chem. 2012 July 1; 20(13): 4020–4031. doi:10.1016/j.bmc.2012.05.011. Antitumor agents 290. † Design, synthesis, and biological evaluation of new LNCaP and PC-3 cytotoxic curcumin analogs conjugated with anti-androgens Qian Shia,c,*, Koji Wadaa, Emika Ohkoshia, Li Lina, Rong Huanga, Susan L. Morris- Natschkea, Masuo Gotob, and Kuo-Hsiung Leea,d,* aNatural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA bCell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7090, USA cAndroScience Corporation, 11175 Flintkote Ave., Suite F, San Diego, CA 92121, USA dChinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan Abstract In our continuing study of curcumin analogs as potential anti-prostate cancer drug candidates, 15 new curcumin analogs were designed, synthesized and evaluated for cytotoxicity against two human prostate cancer cell lines, androgen-dependent LNCaP and androgen-independent PC-3. Twelve analogs (5-12, 15, 16, 19, and 20) are conjugates of curcumin (1) or methyl curcumin (2) with a flutamide- or bicalutamide-like moiety. Two compounds (22 and 23) are C4-mono- and difluoro-substituted analogs of dimethyl curcumin (DMC, 21). Among the newly synthesized conjugates compound 15, a conjugate of 2 with a partial bicalutamide moiety, was more potent than bicalutamide alone and essentially equipotent with 1 and 2 against both prostate tumor cell lines with IC50 values of 41.8 μM (for LNCaP) and 39.1 μM (for PC-3). A cell morphology study revealed that the cytotoxicity of curcumin analogs or curcumin-antiandrogen conjugates detected from both prostate cancer cell lines might be due to the suppression of pseudopodia formation. A molecular intrinsic fluorescence experiment showed that 1 accumulated mainly in the nuclei, while conjugate 6 was distributed in the cytosol. At the tested conditions, antiandrogens suppressed pseudopodia formation in PC-3 cells, but not in LNCaP cells. The evidence suggests that distinguishable target proteins are involved, resulting in the different outcomes toward pseudopodia suppression. Keywords Synthesis; Curcumin analogs; Conjugates; Cytotoxicity; Anti-prostate cancer; Morphology †Antitumor agents 290. For paper 289, see ref 1. © 2012 Elsevier Ltd. All rights reserved. *To whom correspondence should be addressed. Phone: Qian Shi: (919)-843-6325, Fax: (919)-966-3893, [email protected]; Kuo- Hsiung Lee: (919)-962-0066, Fax: (919)-966-3893, [email protected]. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Shi et al. Page 2 1. Introduction Statistically, prostate cancer is still ranked as the most common cancer in American males NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript (28%) and was the second leading cause of cancer-related death among men in the United States (11%) in 2010.2 Constitutive activation of the androgen receptor (AR) by high levels of androgens is presumed to be responsible for the progression of prostate cancer. Most presently available chemotherapeutic agents are antiandrogens, including steroidal anti- androgens and nonsteroidal antiandrogens. The steroidal antiandrogens, such as cyproterone acetate, possess partial agonistic activity to the AR and inter-activity with other hormonal systems, which can induce many complications.3-5 The nonsteroidal antiandrogens, such as flutamide and bicalutamide, have fewer side effects and were thought to be pure AR antagonists. However, antiandrogen withdrawal syndrome has been discovered in patients treated with nonsteroidal antiandrogens for several months.6-7 One proposed mechanism for this syndrome is a mutation of the AR caused by the long-term use of these nonsteroidal antiandrogens, so that the nonsteroidal antiandrogens exhibit agonistic activity to the mutant AR.8 Flutamide and bicalutamide (a racemic mixture) (Figure 1) are two well- known nonsteroidal antiandrogens, widely used for the clinical treatment of prostate cancer.9-10 However, induction of antiandrogen-withdrawal syndrome in patients has been a considerable problem. Combination usage with a gonadotropin-releasing hormone agonist, such as goserelin acetate or leuprolide acetate, is currently recommended and used in the clinic to minimize antiandrogen withdrawal syndrome.11 To date, none of the effective clinically available antiandrogens is able to kill prostate cancer cells. Curcumin (1) (Figure 1), a major yellow pigment of Curcuma longa, has been, reported to have to have anti-prostate cancer activity in vitro and in vivo.12-14 Although the mechanism of action is still unknown, it has been associated with multiple proteins/signaling pathways, such as NF-kB,15 STATs,16 AP-1,17 MAPK,18 and Akt,19 etc. More recently, Ras has been reported to be a potential target protein related to the anticancer activity.20 However, the metabolic instability of 1 leads to its poor bioavailability, which, in part, prevents 1 from being used as an efficient therapeutic drug.21-23 Other reports have identified curcumin analogs that were cytotoxic against androgen-dependent LNCaP cells and androgen- independent PC-3 cells.24-27 Some analogs demonstrated potent anti-AR activity in LNCaP cells and PC-3 cells transfected with wild type AR, and were even more potent than hydroxyflutamide, the active metabolite of flutamide,28-29 although again, the exact mechanism of action remains unclear. It is also known that the conjugation of antitumor drugs with other components such as antioxidants or other antitumor agents has provided some advantages in improving the antitumor efficacy and selectivity, while decreasing the systematic toxicity.30-32 In our search for new anti-prostate cancer drugs with increased potency and minimized adverse antiandrogen effects, we considered conjugation of curcumin or its analogs with clinically used antiandrogens, such as flutamide and bicalutamide, to be a possible approach to develop new anti-prostate cancer leads, in addition to the conventional structural modification of the curcumin molecule alone. Although 1 has been extensively studies recently in combinations with different cancer therapeutic agents to treat cancers through synergistic activity,33-34 the conjugation of 1 (or its analog) with a cancer therapeutic agent has not been explored. Unlike the principle of drug combination, the biological activity of a conjugate basically results from a single molecule in which two or more active components are tethered through covalent chemical bonds. The mechanism of action of the conjugate, therefore, could be different from that of the combination forms. Ideally, the advancement of the conjugation approach lies in “one molecule double or multiple functions”.35 This field merits exploration, and in this manner, we hope to develop new drug candidates potentially inhibiting proliferation of prostate cancer cells and mitigating the side effects of existing Bioorg Med Chem. Author manuscript; available in PMC 2013 July 01. Shi et al. Page 3 antiandrogens. Structurally, flutamide and bicalutamide share a N-(4-substituted-3- (trifluoromethyl)phenyl)acetamido moiety, which may be an essential pharmacophore for NIH-PA Author Manuscript NIH-PA Author Manuscripttheir NIH-PA Author Manuscript anti-prostate cancer activity. New conjugates in which curcumin (1) or methyl curcumin (2) were coupled with a flutamide molecule (or N-arylmethacrylamide moiety of bicalutamide) through various linkages were designed and synthesized (Figure 2). The in vitro anti-prostate cancer activity of the newly synthesized entities was examined and will be used to guide further optimization of new conjugates. It is also known that an enol-ketone linkage in 1 (and its analogs) is an important structural feature for its biological activities.25 In order to further confirm this interesting structure-activity phenomenon and the effectiveness of both enol-ketone/diketone isomers on prostate cancer, we designed and synthesized compounds 22 and 23, which contain fluorine as an isostere of hydrogen at the C4 position.36 With the mono-fluoro substitution, we expect that 22 will be stabilized as only the enol-ketone isomer, while the di-fluoro substituted 23 should retain the diketone form without tautomerization to an enol-ketone isomer. We also determined the subcellular distribution of 1 and its conjugate 6 in PC-3 cells by capturing their intrinsic fluorescence, and observed clear dissimilarity. From these preliminary results, we hope to gain information not only on new SAR but also regarding promising new anti-prostate cancer leads and mechanism of action. 2. Results and Discussion 2.1. Chemistry The starting material 2 was prepared according to a reported synthetic method.37 As illustrated in Scheme 1, the conjugation of 1 or 2 with flutamide-related
Recommended publications
  • Recent Advances on the Progressive Mechanism and Therapy in Castration-Resistant Prostate Cancer
    Journal name: OncoTargets and Therapy Article Designation: Review Year: 2018 Volume: 11 OncoTargets and Therapy Dovepress Running head verso: Wang et al Running head recto: Novel research advancement on mechanism and therapy in CRPC open access to scientific and medical research DOI: 159777 Open Access Full Text Article REVIEW Recent advances on the progressive mechanism and therapy in castration-resistant prostate cancer Keshan Wang1 Background: Although there have been great advances in mechanisms and therapeutic methods Hailong Ruan1 of prostate cancer, the mortality rate of prostate cancer remains high. The castration-resistant Tianbo Xu1 prostate cancer (CRPC), which develops from hormone-sensitive prostate cancer, foreshadows a Lei Liu1 more dismal outcome. Concomitant with the researches in the mechanism of CRPC and therapy Di Liu1 for CRPC, more and more landmark progress has been made in recent years. Hongmei Yang2 Methods: A number of clinical and experimental studies were reviewed to indicate the novel advancement in the progressive mechanism and therapy of CRPC. Xiaoping Zhang1 Results: The androgen receptor (AR) is still a vital driver in the progression of CRPC, while other Ke Chen1 multiple mechanisms also contribute to this progression, such as tumor immunity, cancer stem 1Department of Urology, Union cells, epithelial–mesenchymal transition and DNA repair disorder. In terms of the therapeutic Hospital, Tongji Medical College, Huazhong University of Science and methods of CRPC, chemotherapy with drugs, such as docetaxel, has been the first-line therapy Technology, Wuhan 430022, China; for CRPC for many years. Besides, newer agents, which target some of the above mechanisms, For personal use only.
    [Show full text]
  • Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials
    International Journal of Molecular Sciences Review Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials Wei-Min Chung 1,2,†, Lumin Chen 1,†, Wei-Chun Chang 2, Sheng-Yuan Su 1, Yao-Ching Hung 2,3,* and Wen-Lung Ma 2,4,5,* 1 Department of Obstetrics and Gynecology, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan; [email protected] (W.-M.C.); [email protected] (L.C.); [email protected] (S.-Y.S.) 2 Sex Hormone Research Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40403, Taiwan; [email protected] 3 Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan 4 Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 40403, Taiwan 5 Department of Nursing, Asia University, Taichung 41354, Taiwan * Correspondence: [email protected] (Y.-C.H.); [email protected] (W.-L.M.); Tel.: +886-975681032 (Y.-C.H. & W.-L.M.) † These authors contributed equally as first author. Abstract: Ovarian cancer (OVCA) arises from three cellular origins, namely surface epithelial cells, germ cells, and stromal cells. More than 85% of OVCAs are EOCs (epithelial ovarian carcinomas), which are the most lethal gynecological malignancies. Cancer stem/progenitor cells (CSPCs) are considered to be cancer promoters due to their capacity for unlimited self-renewal and drug resistance. Androgen receptor (AR) belongs to the nuclear receptor superfamily and can be activated through Citation: Chung, W.-M.; Chen, L.; Chang, W.-C.; Su, S.-Y.; Hung, Y.-C.; binding to its ligand androgens. Studies have reported an association between AR expression and Ma, W.-L.
    [Show full text]
  • Oxidative Stress and Redox Signaling in CRPC Progression: Therapeutic Potential of Clinically- Tested Nrf2-Activators
    Mondal et al. Cancer Drug Resist 2021;4:96-124 Cancer DOI: 10.20517/cdr.2020.71 Drug Resistance Review Open Access Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically- tested Nrf2-activators Debasis Mondal, Devin Narwani, Shahnawaz Notta, Dawood Ghaffar, Nikhil Mardhekar, Syed S. A. Quadri Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA. Correspondence to: Dr. Debasis Mondal, Associate Professor of Microbiology, Debusk College of Osteopathic Medicine, Lincoln Memorial University, 9737 Cogdill Road, Rm. #238, Knoxville, TN 37932, USA. E-mail: [email protected] How to cite this article: Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. Cancer Drug Resist 2021;4:96-124. http://dx.doi.org/10.20517/cdr.2020.71 Received: 31 Aug 2020 First Decision: 23 Oct 2020 Revised: 6 Nov 2020 Accepted: 11 Nov 2020 Available online: 19 Mar 2021 Academic Editor: Godefridus J. Peters Copy Editor: Cai-Hong Wang Production Editor: Jing Yu Abstract Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking.
    [Show full text]
  • MEMBRANE ANDROGEN RECEPTOR-INDUCED OXIDATIVE STRESS: MECHANISM INVOLVED in NEURODEGENERATION DISSERTATION Presented to the Gradu
    MEMBRANE ANDROGEN RECEPTOR-INDUCED OXIDATIVE STRESS: MECHANISM INVOLVED IN NEURODEGENERATION DISSERTATION Presented to the Graduate Council of the Graduate School of Biomedical Sciences University of North Texas Health Science Center at Fort Worth in Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY By Mavis A. A. Tenkorang, B (Pharm) Fort Worth, Texas April 2019 i Copyright by Mavis A. A. Tenkorang 2019 ii MEMBRANE ANDROGEN RECEPTOR-INDUCED OXIDATIVE STRESS: MECHANISM INVOLVED IN NEURODEGENERATION Mavis A.A. Tenkorang APPROVED: ……………………………………………………………………………………………………… Major Professor, Rebecca L. Cunningham, Ph.D ……………………………………………………………………………………………………… Committee Member, Sid O’Bryant, Ph.D ……………………………………………………………………………………………………… Committee Member, Derek Schreihofer, Ph.D ……………………………………………………………………………………………………… Committee Member, Robert Barber, Ph.D ……………………………………………………………………………………………………… University Member, YiQiang (Eric) Cheng, Ph.D ……………………………………………………………………………………………………… Chair, Department of Pharmacology & Neuroscience, Michael Forster, Ph.D ……………………………………………………………………………………………………… Dean, J. Michael Mathis, Ph.D, EdD), Graduate School of Biomedical Sciences iii ABSTRACT Oxidative stress-associated neurodegenerative diseases, such as Parkinson’s disease (PD), affect millions of people worldwide. Although aging is the greatest risk factor for PD, other significant factors may be implicated, such as sex hormones that can mediate sex differences. Men have a higher incidence and prevalence of PD than women. Therefore, testosterone, a primary male sex hormone and a known oxidative stressor, is implicated in PD pathophysiology. Since androgens can have negative effects on dopaminergic cells, it is imperative to understand the underlying mechanisms in order to determine what mediates the observed sex differences in PD prevalence. NADPH Oxidase 1 and 2 are major oxidative stress generators in the brain, thus potential targets for testosterone-induced oxidative stress and cell death.
    [Show full text]
  • Androgen-AR Axis in Primary and Metastatic Prostate Cancer: Chasing Steroidogenic Enzymes for Therapeutic Intervention
    Pippione et al. J Cancer Metastasis Treat 2017;3:328-61 DOI: 10.20517/2394-4722.2017.44 Journal of Cancer Metastasis and Treatment www.jcmtjournal.com Topic: How does the prostate cancer microenvironment affect the metastatic Open Access process and/or treatment outcome? Androgen-AR axis in primary and metastatic prostate cancer: chasing steroidogenic enzymes for therapeutic intervention Agnese C. Pippione1, Donatella Boschi1, Klaus Pors2, Simonetta Oliaro-Bosso1, Marco L. Lolli1 1Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy. 2Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK. Correspondence to: Dr. Marco L. Lolli, Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy. E-mail: [email protected]; Dr. Simonetta Oliaro-Bosso, Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy. E-mail: [email protected] How to cite this article: Pippione AC, Boschi D, Pors K, Oliaro-Bosso S, Lolli ML. Androgen-AR axis in primary and metastatic prostate cancer: chasing steroidogenic enzymes for therapeutic intervention. J Cancer Metastasis Treat 2017;3:328-61. ABSTRACT Article history: Androgens play an important role in prostate cancer (PCa) development and progression. Received: 21 Jun 2017 Although androgen deprivation therapy remains the front-line treatment for advanced First Decision: 16 Aug 2017 prostate cancer, patients eventually relapse with the lethal form of the disease. The prostate Revised: 4 Sep 2017 tumor microenvironment is characterised by elevated tissue androgens that are capable of Accepted: 26 Oct 2017 activating the androgen receptor (AR).
    [Show full text]
  • The Role of Androgens and Androgen Receptor in Human Bladder Cancer
    biomolecules Review The Role of Androgens and Androgen Receptor in Human Bladder Cancer Elizabeth Martínez-Rojo, Laura Cristina Berumen , Guadalupe García-Alcocer and Jesica Escobar-Cabrera * Unidad de Investigación Genética, Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; [email protected] (E.M.-R.); [email protected] (L.C.B.); [email protected] (G.G.-A.) * Correspondence: [email protected]; Tel.: +55-4421287051 Abstract: Bladder cancer (urothelial carcinoma) is one of the most frequently diagnosed neoplasms, with an estimated half a million new cases and 200,000 deaths per year worldwide. This pathol- ogy mainly affects men. Men have a higher risk (4:1) of developing bladder cancer than women. Cigarette smoking and exposure to chemicals such as aromatic amines, and aniline dyes have been established as risk factors for bladder cancer and may contribute to the sex disparity. Male internal genitalia, including the urothelium and prostate, are derived from urothelial sinus endoderm; both tissues express the androgen receptor (AR). Several investigations have shown evidence that the AR plays an important role in the initiation and development of different types of cancer including bladder cancer. In this article, we summarize the available data that help to explain the role of the AR in the development and progression of bladder cancer, as well as the therapies used for its treatment. Keywords: androgens; androgen receptor; bladder cancer; signaling pathways; therapies Citation: Martínez-Rojo, E.; Berumen, L.C.; García-Alcocer, G.; Escobar-Cabrera, J. The Role of 1. Introduction Androgens and Androgen Receptor Bladder cancer has high incidence and mortality around the world.
    [Show full text]
  • Androgen Receptor
    Androgen Receptor Androgen receptor (AR) is a type of nuclear receptor that is activated by binding of either of the androgenic hormones testosterone or dihydrotestosterone in the cytoplasm and then translocating into the nucleus. Upon binding the hormone ligand, the receptor dissociates from accessory proteins, translocates into the nucleus, dimerizes, and then stimulates transcription of androgen responsive genes. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor. The main function of the androgen receptor is as a DNA-binding transcription factor that regulates gene expression. Androgen regulated genes are critical for the development and maintenance of the male sexual phenotype. Mutations in this gene are also associated with complete androgen insensitivity (CAIS). www.MedChemExpress.com 1 Androgen Receptor Inhibitors & Modulators (R)-UT-155 3,3'-Diindolylmethane Cat. No.: HY-112895A (DIM; Arundine; HB 236) Cat. No.: HY-15758 Bioactivity: (R)-UT-155 (compound 11) is a selective androgen receptor Bioactivity: 3,3'-Diindolylmethane is a strong, pure androgen receptor degrader (SARD) ligand. Less active than the S-isomer [1] (AR) antagonist. [2]. Purity: >98% Purity: 98.74% Clinical Data: No Development Reported Clinical Data: Phase 4 Size: 250 mg, 500 mg Size: 10mM x 1mL in DMSO, 100 mg, 200 mg, 500 mg ACP-105 Ailanthone Cat. No.: HY-112256 (Δ13-Dehydrochaparrinone) Cat. No.: HY-N1943 Bioactivity: ACP-105 is an orally available, selective amd potent androgen Bioactivity: Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) ( IC =69nM) receptor modulator (SARM), with pEC50s of 9.0 and 9.3 for 50 AR wild type and T877A mutant, respectively.
    [Show full text]
  • WO 2013/024048 Al 21 February 2013 (21.02.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/024048 Al 21 February 2013 (21.02.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 47/48 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/EP2012/065736 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 10 August 2012 (10.08.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 11177406.3 12 August 201 1 (12.08.201 1) EP (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): AS- kind of regional protection available): ARIPO (BW, GH, CENDIS PHARMA A/S [DK/DK]; Tuborg Boulevard 12, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, DK-2900 Hellerup (DK).
    [Show full text]
  • Nanog Interaction with the Androgen
    Ling et al. Journal of Ovarian Research (2018) 11:36 https://doi.org/10.1186/s13048-018-0403-2 RESEARCH Open Access Nanog interaction with the androgen receptor signaling axis induce ovarian cancer stem cell regulation: studies based on the CRISPR/Cas9 system Kaijian Ling1†, Lupin Jiang1†, Shi Liang2†, Joseph Kwong3, Leiyan Yang1, Yudi Li1, PingYin1, Qingchun Deng1* and Zhiqing Liang1* Abstract Background: Ovarian cancer stem cells (OCSCs) contribute to the poor prognosis of ovarian cancer. Involvement of the androgen receptor (AR) in the malignant behaviors of other tumors has been reported. However, whether AR associates with Nanog (a stem cell marker) and participates in OCSC functions remain unclear. In this study, we investigated the interaction of Nanog with AR and examined whether this interaction induced stem-like properties in ovarian cancer cells. Methods: AR and Nanog expression in ovarian tumors was evaluated. Using the CRISPR/Cas9 system, we constructed a Nanog green fluorescent protein (GFP) marker cell model to investigate the expression and co-localization of Nanog and AR. Then, we examined the effect of androgen on the Nanog promoter in ovarian cancer cell lines (A2780 and SKOV3). After androgen or anti-androgen treatment, cell proliferation, migration, sphere formation, colony formation and tumorigenesis were assessed in vitro and in vivo. Results: Both AR and Nanog expression were obviously high in ovarian tumors. Our results showed that Nanog expression was correlated with AR expression. The androgen 5α-dihydrotestosterone (DHT) activated Nanog promoter transcription. Meanwhile, Nanog GFP-positive cells treated with DHT exhibited higher levels of proliferation, migration, sphere formation and colony formation.
    [Show full text]
  • Drug Discovery in Advanced Prostate Cancer: Translating Biology Into Therapy
    Drug discovery in advanced prostate cancer: translating biology into therapy Timothy A. Yap1,2, Alan D. Smith1,2, Roberta Ferraldeschi1,2, Bissan Al-Lazikani1, Paul Workman1 & Johann S. de Bono1,2 1. The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK. 2. Royal Marsden NHS Foundation Trust, Downs Road, London SM2 5PT, UK. Correspondence to Johann S. de Bono. Abstract Castration-resistant prostate cancer (CRPC) is associated with a poor prognosis and poses considerable therapeutic challenges. Recent genetic and technological advances have provided insights into prostate cancer biology and have enabled the identification of novel drug targets and potent molecularly targeted therapeutics for this disease. In this article, we review recent advances in prostate cancer target identification for drug discovery and discuss their promise and associated challenges. We review the evolving therapeutic landscape of CRPC and discuss issues associated with precision medicine as well as challenges encountered with immunotherapy for this disease. Finally, we envision the future management of CRPC, highlighting the use of circulating biomarkers and modern clinical trial designs. Key points Castration-resistant prostate cancer (CRPC) is associated with a poor prognosis and poses considerable therapeutic challenges. Recent genetic and technological advances have provided insights into prostate cancer biology and enabled the identification of novel drug targets and potent molecularly targeted therapeutics for the disease. Promising targets in CRPC include the androgen receptor and its variants, key signalling pathways such as phosphoinositide 3-kinase (PI3K)–AKT and WNT signalling, and DNA repair defects. The therapeutic landscape of CRPC is evolving, with an increased focus on research into tumour heterogeneity, immuno-oncology, minimally invasive circulating tissue biomarkers, and modern clinical trial designs.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0082123 A1 RAU Et Al
    US 20160O821 23A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0082123 A1 RAU et al. (43) Pub. Date: Mar. 24, 2016 (54) HYDROGEL-LINKED PRODRUGS (30) Foreign Application Priority Data RELEASING TAGGED DRUGS Apr. 22, 2013 (EP) .................................. 13164669.7 (71) Applicant: ASCENDIS PHARMA A/S, Hellerup Oct. 8, 2013 (EP) .................................. 13187784.7 (DK) Publication Classification (72) Inventors: Harald RAU, Dossenheim (DE); Nora KALUZA, Heidelberg (DE); Ulrich (51) Int. Cl. HERSEL, Heidelberg (DE); Thomas A647/48 (2006.01) KNAPPE, Heidelberg (DE); Burkhardt (52) U.S. Cl. LAUFER, Dossenheim (DE) CPC. A61 K47/48784 (2013.01); A61K 47/48215 2013.O1 (73) Assignee: Ascendis Pharma A/S, Hellerup (DK) ( ) (21) Appl. No.: 14/786,481 (57) ABSTRACT 1-1. The present invention relates to a process for the preparation (22) PCT Filed: Apr. 16, 2014 of a hydrogel-linked prodrug releasing a tag moiety-biologi (86). PCT No.: PCT/EP2014/057753 releasingcally active a tag moiety moiety-biologically conjugate, to a hydrogel-linked active moiety conjugate prodrug S371 (c)(1), obtainable by Such process, to pharmaceutical compositions (2) Date: Oct. 22, 2015 comprising said prodrug and their use as a medicament. US 2016/00821 23 A1 Mar. 24, 2016 HYDROGEL-LINKED PRODRUGS boxyl (-COOH) or activated carboxyl ( COY, RELEASING TAGGED DRUGS wherein Y is selected from formulas (fi) to (f-vi): FIELD OF THE INVENTION 0001. The present invention relates to a process for the (f-i) preparation of a hydrogel-linked prodrug releasing a tag moi ety-biologically active moiety conjugate, to a hydrogel linked prodrug releasing a tag moiety-biologically active moiety conjugate obtainable by Such process, to pharmaceu tical compositions comprising said prodrug and their use as a medicament.
    [Show full text]
  • Cancer Stem Cells in Prostate Cancer
    Review Article Cancer stem cells in prostate cancer Felix Moltzahn, George N. Thalmann Department of Urology, University of Bern, Bern, Switzerland Correspondence to: George N. Thalmann, M.D. Department of Urology, University Hospital of Bern, Inselspital, 3010 Bern, Switzerland. Email: [email protected]. Abstract: Prostate cancer (P-Ca) remains a leading cause of cancer-related death in men. Lately, increasing evidence for a hierarchically organized cancer stem cell (CSC) model emerged for different tumors entities, including P-Ca. CSCs are defined by several characteristics including self-renewal, pluripotency and tumorigenicity and are thought to be responsible for tumor recurrence, metastasis and cancer related death. In this review we discuss the recent research in the field of CSCs, its limitations and therapeutical implications in general and specifically in P-Ca. Keywords: Cancer stem cells (CSCs); castration resistance; hierarchy; prostate cancer (P-Ca) Submitted Aug 20, 2013. Accepted for publication Sep 05, 2013. doi: 10.3978/j.issn.2223-4683.2013.09.06 Scan to your mobile device or view this article at: http://www.amepc.org/tau/article/view/2763/3636 Introduction cancer heterogeneity (5). Only a small proportion of cells is capable of self-renewal and responsible for tumor initiation, Despite enormous basic and clinical research efforts as well growth and recurrence, while the majority of cells may be as progress in modern diagnosis and therapeutical options non-tumorigenic end cells. In parallel to normal tissues including surgery, radiation and chemotherapy the overall where cellular hierarchy is maintained by stem cells, this survival rates of human cancer barely increased in the last biologically distinct cancer cells have been termed cancer decades (1).
    [Show full text]