Gayana 72(1) 2008.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Gayana 72(1) 2008.Pmd Gayana 72(1): 79-93, 2008 ISSN 0717-652X RADIOLARIOS POLYCYSTINA (PROTOZOA: NASSELLARIA Y SPUMELLARIA) SEDIMENTADOS EN LA ZONA CENTRO-SUR DE CHILE (36°- 43° S) POLYCYSTINA RADIOLARIA (PROTOZOA: NASSELLARIA AND SPUMELLARIA) SEDIMENTED IN THE CENTER-SOUTH ZONE OF CHILE (36°- 43° S) Odette Vergara S.1, Margarita Marchant S. M.1 & Susana Giglio2,3 1Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile, [email protected]. 2Laboratorio de Procesos Oceanográficos y Clima (PROFC), Universidad de Concepción, Casilla 160-C, Concepción, Chile. 3Magíster en Ciencias con mención Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile. RESUMEN Los radiolarios son protozoos planctónicos marinos, los cuales, a pesar de ser sólo una célula, son sofisticados y complejos organismos. La Subclase Radiolaria está formada por 2 superórdenes: Trypilea y Polycystina, siendo el último el más estudiado, pues su esqueleto de opal es más resistente a la disolución en agua de mar y por ende, más comúnmente preservados en el registro fósil. Los radiolarios han sido usados como una útil herramienta oceanográfica, bioestratigráfica y paleoambiental, gracias a su esqueleto de sílice y a su gran rango geológico. En nuestro país el conocimiento de este grupo es muy escaso, es por esto que el presente trabajo, tiene como principal objetivo, aportar con la identificación y descripción de especies de radiolarios Polycystinos, no antes registrados para esta zona en particular. El material fue recolectado por la Expedición PUCK R/V Sonne Cruise SO-156 Valparaíso-Chiloé-Talcahuano realizada en mayo de 2001. Se analizaron 20 muestras tomadas entre 125 y 3.485 m de profundidad, distribuidas desde Concepción hasta Chiloé (36º-43ºS). Se identificaron un total de 28 especies pertenecientes a 20 géneros y a 9 familias. La mayor cantidad de individuos fue encontrada en la estación 3 frente a Concepción a 798 m de profundidad, lo que se asocia a los periodos de surgencias estacionales y a procesos de sedimentación de las testas y disolución del opal relativamente cortos. Hacia el sur disminuye notablemente la abundancia de ambos órdenes estudiados. PALABRAS CLAVES: Radiolarios, Polycystina, Nassellaria y Spumellaria, recientes, opal, Pacífico sureste, Chile. ABSTRACT The radiolarians are planktonic marine protozoans, which although be only one cell, are sophisticated and complex organisms. The Subclass Radiolaria is formed by two superorders: Trypilea and Polycystina, this last is the most studied, because its skeleton from opal is resistent to the sea water disolution and for this reason are preserved in the fosil record. The radiolarians have been used like a useful oceanographic, biostratigraphic and paleoambiental tool for their silica skeleton and large geologic range. In our country the knowledge of this group is poor, for this reason the present work has the objective to contribute with the indentification and description of Polycystins radiolarians not described and recorded before for this particular zone. The material used was obtained to the PUCK R/V Sonne Cruise SO-156 Valparaíso-Chiloé-Talcahuano Expedition realized in may of 2001. The 20 samples were obtained with a multicore between 125 and 3.485 m depth distributed from Concepción to Chiloé (36°-43°S). Were idientified 28 species appertaining to 20 genus and 9 families. The major amount of individuals was found in the station 3 in front of Concepción to 789 m depth, this could be associated at the seasonals upwelling periods and process to sedimentation of the shells and opal disolution relatively short. Southward decrease the abundance of the two orders studied. KEYWORDS: Radiolarians, Polycystina, Nassellaria and Spumellaria, recents, opal, South Eastern Pacific, Chile. 79 Gayana 72(1), 2008 INTRODUCCION organismos está limitada por la disponibilidad del sílice disuelto, en aquellos lugares donde su concentración Los radiolarios son protozoos marinos, holoplanctónicos, es alta, las diatomeas son el fitoplancton dominante cuya máxima concentración se encuentra en la capa (Libes 1992) y por lo tanto, es de esperar que la fótica o hasta los 100 m de la superficie, pero también producción de radiolarios también sea alta. pueden vivir a varios metros de profundidad en las En Chile la primera información que se tiene de los zonas epipelágica y mesopelágica (Kling & Boltovskoy radiolarios corresponde al estudio realizado por 1995), distribuyéndose ampliamente en los mares y Haeckel (1887) con material recolectado por el océanos mundiales (Grupta et al. 2002). Aparecieron en Challenger (1873-1876). Zapata & Olivares (2005) el Precámbrico y su preservación en los sedimentos describieron e ilustraron 30 especies de radiolarios en marinos ha permitido usarlos (tanto fósiles como Caldera. También en la misma zona norte Zapata & recientes) en una variedad de estudios: bioestratigráficos Rojas (2006) describen e ilustran 60 especies de (Wesberg & Riedel 1978), biogeográficos (e.g. Polycystinos. Boltovskoy 1994, 1999; Kling & Boltovskoy 1995), Como se infiere, existen muy pocos estudios de paleoclimáticos y de productividad (e.g. Boltovskoy radiolarios en nuestro país, es por esta razón que el 1988; Boltovskoy et al. 1993), paleoecológicos (e.g. objetivo principal de este trabajo es dar a conocer la Molina-Cruz & Herguera 2002) y taxonómicos (e.g. radiolariofauna presente en los sedimentos desde Haeckel 1887; Benson 1966; Riedel 1967a, b; Abelmann Concepción (36°S) hasta la Isla de Chiloé (43°S) a 1992). diferentes profundidades, realizando análisis cuali y Se caracterizan por la presencia de extensiones cuantitativo de la radiolariofauna. protoplasmáticas o seudópodos del tipo axópodos y filópodos, y por la presencia de una conchilla o esqueleto silíceo de configuración generalmente radial, MATERIALES Y METODOS que constituye el principal atributo para identificar las especies, especialmente las sedimentadas y fosilizadas El material estudiado fue recolectado durante la (Campbell 1954; Kudo 1969). La clasificación de Expedición científica PUCK SONNE SO 156 (Hebbeln Radiolaria se basa exclusivamente en el esqueleto. Sin et al. 2001), realizada en mayo de 2001. Se recolectaron embargo, se incluyen algunas características del 20 muestras con multicore a profundidades que citoplasma que permiten identificar algunos órdenes. variaron entre 125 y 3.485 m, desde Concepción hasta Un rasgo que distingue a todos los radiolarios es la la Isla de Chiloé (36º- 43ºS) (Tabla I, Fig.1). cápsula central, una membrana proteica perforada que Todos los análisis se realizaron en el Laboratorio de divide el citoplasma en dos áreas: el endoplasma o Foraminiferología de la Facultad de Ciencias Naturales citoplasma intracapsular, y el calimma o citoplasma y Oceanográficas (Universidad de Concepción), extracapsular. La cápsula central puede ser esférica donde se procedió a extraer aprox. 1 cm (10 cm. de (Spumellaria) o elongada y periforme (Nassellaria). El diámetro) del sedimento del multicore, el que fue lavado, citoplasma intracapsular cuenta con sustancias de secado y tamizado, separándolo en 2 fracciones (>212; reserva y con organelos (núcleo o nucleolo, 212-150 mm). Este sedimento fue revisado bajo lupa y mitocondria y otros organelos, excepto vacuolas los ejemplares obtenidos se depositaron en reglillas digestivas) que cumplen las funciones reproductivas faunísticas para realizar su identificación específica y y producción de energía. El esqueleto de las formas contabilización. solitarias posee un tamaño que varía entre los 30 y Las especies encontradas fueron fotografiadas 300 µm (Boltovskoy 1998), pero en las colonias, de utilizando un microscopio electrónico de barrido forma excepcional, se han encontrado tamaños de (Laboratorio de Microscopía Electrónica, Dirección hasta 3 m (Swanberg 1979). de Investigación, Universidad de Concepción). Para Los radiolarios juegan un importante rol en el ciclo de la determinación taxonómica de las especies se sílice de los océanos y, junto con diatomeas y utilizaron trabajos de los siguientes autores: Haeckel silicoflagelados, son los responsables de generar la (1887), Takahashi (1991), Van de Paverd (1995) y formación de sedimentos silicios en ambientes marinos Boltovskoy (1998). Para la determinación de los profundos de bajas latitudes, tal como sucede en la Taxa superiores se siguió el criterio de Cavalier-Smith zona este del Océano Pacífico. La producción de estos (1998). 80 Radiolarios sedimentados en la zona centro-sur de Chile: VERGARA, O. ET AL. FIGURA 1. Distribución geográfica de las 20 muestras de sedimento extraídas entre la Bahía de Concepción y la Isla de Chiloé (36º-43ºS) durante mayo de 2001. FIGURE 1. Geographic location of the gathered stations between Concepción and Chiloé Island (36º-43ºS), Chile, during may, 2001. TABLA I: Ubicación geográfica y profundidad de las muestras recolectadas y analizadas entre la Bahía de Concepción y la Isla de Chiloé (VIII - XI Región), Chile. TABLE I. Geographic location and depth of the samples collected between Concepción Bay and Chiloé Island (VIII-XI Región), Chile. Estación Nº estación Latitud (ºS) Longitud (ºW) Profundidad (m) (Geo-B) 7163-5 1 36. 42 73. 59 539 7166-3 2 36. 46 73. 77 1.294 7162-4 3 36. 54 73. 66 798 7203-2 4 38. 02 73. 93 281 7202-1 5 38. 12 73. 93 629 7198-1 6 38. 17 74. 39 2.287 7199-2 7 38. 19 74. 33 1.673 7200-1 8 38. 20 74. 07 364 7212-1 9 39. 69 74. 37 1.469 7215-1 10 39. 81 74. 06 498 81 Gayana 72(1), 2008 Continuación Tabla I Estación Nº estación Latitud (ºS) Longitud (ºW) Profundidad (m) (Geo-B) 7211-1 11 39. 93 74. 26 890 7216-1 12 40. 04 73. 93 165 7197-1 13 40. 99 74. 55 816 7195-1 14 41. 20 74. 40 521 7193-1 15 42. 17 74. 71 209 7175-1 16 42. 45 75. 21 1.967 7174-1 17 42. 54 74. 99 1.222 7177-1 18 42. 58 74. 83 909 7180-1 19 43. 36 75. 56 3485 7182-1 20 43. 36 74. 91 301 RESULTADOS Dictyocoryne profunda Ehrenberg, 1872 Dictyocoryne truncatum Ehrenberg I.
Recommended publications
  • An Evaluated List of Cenozic-Recent Radiolarian Species Names (Polycystinea), Based on Those Used in the DSDP, ODP and IODP Deep-Sea Drilling Programs
    Zootaxa 3999 (3): 301–333 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3999.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:69B048D3-7189-4DC0-80C0-983565F41C83 An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs DAVID LAZARUS1, NORITOSHI SUZUKI2, JEAN-PIERRE CAULET3, CATHERINE NIGRINI4†, IRINA GOLL5, ROBERT GOLL5, JANE K. DOLVEN6, PATRICK DIVER7 & ANNIKA SANFILIPPO8 1Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. E-mail: [email protected] 2Institute of Geology and Paleontology, Tohoku University, Sendai 980-8578 Japan. E-mail: [email protected] 3242 rue de la Fure, Charavines, 38850 France. E-mail: [email protected] 4deceased 5Natural Science Dept, Blinn College, 2423 Blinn Blvd, Bryan, Texas 77805, USA. E-mail: [email protected] 6Minnehallveien 27b, 3290 Stavern, Norway. E-mail: [email protected] 7Divdat Consulting, 1392 Madison 6200, Wesley, Arkansas 72773, USA. E-mail: [email protected] 8Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. E-mail: [email protected] Abstract A first reasonably comprehensive evaluated list of radiolarian names in current use is presented, covering Cenozoic fossil to Recent species of the primary fossilising subgroup Polycystinea. It is based on those species names that have appeared in the literature of the Deep Sea Drilling Project and its successor programs, the Ocean Drilling Program and Integrated Ocean Drilling Program, plus additional information from the published literature, and several unpublished taxonomic da- tabase projects.
    [Show full text]
  • Radiozoa (Acantharia, Phaeodaria and Radiolaria) and Heliozoa
    MICC16 26/09/2005 12:21 PM Page 188 CHAPTER 16 Radiozoa (Acantharia, Phaeodaria and Radiolaria) and Heliozoa Cavalier-Smith (1987) created the phylum Radiozoa to Radiating outwards from the central capsule are the include the marine zooplankton Acantharia, Phaeodaria pseudopodia, either as thread-like filopodia or as and Radiolaria, united by the presence of a central axopodia, which have a central rod of fibres for rigid- capsule. Only the Radiolaria including the siliceous ity. The ectoplasm typically contains a zone of frothy, Polycystina (which includes the orders Spumellaria gelatinous bubbles, collectively termed the calymma and Nassellaria) and the mixed silica–organic matter and a swarm of yellow symbiotic algae called zooxan- Phaeodaria are preserved in the fossil record. The thellae. The calymma in some spumellarian Radiolaria Acantharia have a skeleton of strontium sulphate can be so extensive as to obscure the skeleton. (i.e. celestine SrSO4). The radiolarians range from the A mineralized skeleton is usually present within the Cambrian and have a virtually global, geographical cell and comprises, in the simplest forms, either radial distribution and a depth range from the photic zone or tangential elements, or both. The radial elements down to the abyssal plains. Radiolarians are most useful consist of loose spicules, external spines or internal for biostratigraphy of Mesozoic and Cenozoic deep sea bars. They may be hollow or solid and serve mainly to sediments and as palaeo-oceanographical indicators. support the axopodia. The tangential elements, where Heliozoa are free-floating protists with roughly present, generally form a porous lattice shell of very spherical shells and thread-like pseudopodia that variable morphology, such as spheres, spindles and extend radially over a delicate silica endoskeleton.
    [Show full text]
  • Articles and Minimizes the Loss of Material
    Clim. Past, 16, 2415–2429, 2020 https://doi.org/10.5194/cp-16-2415-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow Martin Tetard1, Ross Marchant1,a, Giuseppe Cortese2, Yves Gally1, Thibault de Garidel-Thoron1, and Luc Beaufort1 1Aix Marseille Univ, CNRS, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France 2GNS Science, Lower Hutt, New Zealand apresent address: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Australia Correspondence: Martin Tetard ([email protected]) Received: 3 June 2020 – Discussion started: 9 July 2020 Revised: 22 September 2020 – Accepted: 5 October 2020 – Published: 2 December 2020 Abstract. Identification of microfossils is usually done ing, processing, segmentation and recognition, is entirely by expert taxonomists and requires time and a significant automated via a LabVIEW interface, and it takes approx- amount of systematic knowledge developed over many years. imately 1 h per sample. Census data count and classi- These studies require manual identification of numerous fied radiolarian images are then automatically exported and specimens in many samples under a microscope, which is saved. This new workflow paves the way for the analysis very tedious and time-consuming. Furthermore, identifica- of long-term, radiolarian-based palaeoclimatic records from tion may differ between operators, biasing reproducibility. siliceous-remnant-bearing samples. Recent technological advances in image acquisition, pro- cessing and recognition now enable automated procedures for this process, from microscope image acquisition to taxo- nomic identification. 1 Introduction A new workflow has been developed for automated radio- larian image acquisition, stacking, processing, segmentation The term radiolarians currently refers to the polycystine ra- and identification.
    [Show full text]
  • 1 Flux Variations and Vertical Distributions Of
    1 Flux variations and vertical distributions of siliceous Rhizaria (Radiolaria and 2 Phaeodaria) in the western Arctic Ocean: indices of environmental changes 3 4 Takahito Ikenoue a, b, c, *, Kjell R. Bjørklund b, Svetlana B. Kruglikova d, Jonaotaro 5 Onodera c, Katsunori Kimoto c, Naomi Harada c 6 7 a: Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu 8 University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan 9 10 b: Natural History Museum, Department of Geology, University of Oslo, P.O. Box 11 1172 Blindern, 0318 Oslo, Norway 12 13 c: Research and Development Center for Global Change, JAMSTEC, Natsushima-cho 14 2-15, Yokosuka, 237-0061, Japan. 15 16 d: P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky 17 Prospect 36, 117883 Moscow, Russia 18 19 *Corresponding author; Present address: Central Laboratory, Marine Ecology Research 20 Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba 299-5105 Japan; E-mail: 21 [email protected] 22 23 Abstract 24 The vertical distribution of radiolarians was investigated using a vertical multiple 25 plankton sampler (100−0, 250−100, 500−250 and 1,000−500 m water depths, 62 µm 26 mesh size) at the Northwind Abyssal Plain and southwestern Canada Basin in 27 September 2013. To investigate seasonal variations in the flux of radiolarians in relation 28 to sea ice and water masses, a time series sediment trap system was moored at Station 29 NAP (75°00'N, 162°00'W, bottom depth 1,975 m) in the western Arctic Ocean during 30 October 2010–September 2012.
    [Show full text]
  • An Evaluated List of Cenozic-Recent Radiolarian Species Names (Polycystinea), Based on Those Used in the DSDP, ODP and IODP Deep-Sea Drilling Programs
    Zootaxa 3999 (3): 301–333 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3999.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:69B048D3-7189-4DC0-80C0-983565F41C83 An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs DAVID LAZARUS1, NORITOSHI SUZUKI2, JEAN-PIERRE CAULET3, CATHERINE NIGRINI4†, IRINA GOLL5, ROBERT GOLL5, JANE K. DOLVEN6, PATRICK DIVER7 & ANNIKA SANFILIPPO8 1Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. E-mail: [email protected] 2Institute of Geology and Paleontology, Tohoku University, Sendai 980-8578 Japan. E-mail: [email protected] 3242 rue de la Fure, Charavines, 38850 France. E-mail: [email protected] 4deceased 5Natural Science Dept, Blinn College, 2423 Blinn Blvd, Bryan, Texas 77805, USA. E-mail: [email protected] 6Minnehallveien 27b, 3290 Stavern, Norway. E-mail: [email protected] 7Divdat Consulting, 1392 Madison 6200, Wesley, Arkansas 72773, USA. E-mail: [email protected] 8Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. E-mail: [email protected] Abstract A first reasonably comprehensive evaluated list of radiolarian names in current use is presented, covering Cenozoic fossil to Recent species of the primary fossilising subgroup Polycystinea. It is based on those species names that have appeared in the literature of the Deep Sea Drilling Project and its successor programs, the Ocean Drilling Program and Integrated Ocean Drilling Program, plus additional information from the published literature, and several unpublished taxonomic da- tabase projects.
    [Show full text]
  • Flux Variations and Vertical Distributions of Siliceous Rhizaria
    1 Flux variations and vertical distributions of siliceous Rhizaria (Radiolaria and 2 Phaeodaria) in the western Arctic Ocean: indices of environmental changes 3 4 Takahito Ikenoue a, b, c, *, Kjell R. Bjørklund b, Svetlana B. Kruglikova d, Jonaotaro 5 Onodera c, Katsunori Kimoto c, Naomi Harada c 6 7 a: Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu 8 University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan 9 10 b: Natural History Museum, Department of Geology, University of Oslo, P.O. Box 1172 11 Blindern, 0318 Oslo, Norway 12 13 c: Research and Development Center for Global Change, JAMSTEC, Natsushima-cho 14 2-15, Yokosuka, 237-0061, Japan. 15 16 d: P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky 17 Prospect 36, 117883 Moscow, Russia 18 19 *Corresponding author; Present address: Central Laboratory, Marine Ecology Research 20 Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba 299-5105 Japan; E-mail: 21 [email protected] 22 23 Abstract 24 The vertical distribution of radiolarians was investigated using a vertical multiple 25 plankton sampler (100−0, 250−100, 500−250 and 1,000−500 m water depths, 62 µm 26 mesh size) at the Northwind Abyssal Plain and southwestern Canada Basin in 27 September 2013. To investigate seasonal variations in the flux of radiolarians in relation 28 to sea-ice and water masses, a time series sediment trap system was moored at Station 29 NAP (75°00'N, 162°00'W, bottom depth 1,975 m) in the western Arctic Ocean during 30 October 2010–September 2012.
    [Show full text]
  • 1 Flux Variations and Vertical Distributions of Siliceous Rhizaria
    1 Flux variations and vertical distributions of siliceous Rhizaria (Radiolaria and 2 Phaeodaria) in the western Arctic Ocean: indices of environmental changes 3 4 Takahito Ikenoue a, b, c, *, Kjell R. Bjørklund b, Svetlana B. Kruglikova d, Jonaotaro 5 Onodera c, Katsunori Kimoto c, Naomi Harada c 6 7 a: Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu 8 University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan 9 10 b: Natural History Museum, Department of Geology, University of Oslo, P.O. Box 11 1172 Blindern, 0318 Oslo, Norway 12 13 c: Research and Development Center for Global Change, JAMSTEC, Natsushima-cho 14 2-15, Yokosuka, 237-0061, Japan. 15 16 d: P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky 17 Prospect 36, 117883 Moscow, Russia 18 19 *Corresponding author; Present address: Central Laboratory, Marine Ecology Research 20 Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba 299-5105 Japan; E-mail: 21 [email protected] 22 23 Abstract 24 The vertical distribution of radiolarians was investigated using a vertical multiple 25 plankton sampler (100−0, 250−100, 500−250 and 1,000−500 m water depths, 62 µm 26 mesh size) at the Northwind Abyssal Plain and southwestern Canada Basin in 27 September 2013. To investigate seasonal variations in the flux of radiolarians in relation 28 to sea-ice and water masses, a time series sediment trap system was moored at Station 29 NAP (75°00'N, 162°00'W, bottom depth 1,975 m) in the western Arctic Ocean during 30 October 2010–September 2012.
    [Show full text]
  • (Radiolaria) in the Western Arctic Ocean: Environmental Indices in a Warming Arctic T
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 11, 16645–16701, 2014 www.biogeosciences-discuss.net/11/16645/2014/ doi:10.5194/bgd-11-16645-2014 © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available. Flux variations and vertical distributions of microzooplankton (Radiolaria) in the western Arctic Ocean: environmental indices in a warming Arctic T. Ikenoue1,2,3,*, K. R. Bjørklund2, S. B. Kruglikova4, J. Onodera3, K. Kimoto3, and N. Harada3 1Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan 2Natural History Museum, Department of Geology, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway 3Research and Development Center for Global Change, JAMSTEC, Natsushima-cho 2-15, Yokosuka, 237-0061, Japan 4P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Prospect 36, 117883 Moscow, Russia *now at: Central Laboratory, Marine Ecology Research Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba 299-5105 Japan 16645 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 4 October 2014 – Accepted: 10 November 2014 – Published: 3 December 2014 Correspondence to: T. Ikenoue ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 16646 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract The vertical distribution of radiolarians was investigated using a vertical multiple plank- ton sampler (100–0, 250–100, 500–250 and 1000–500 m water depths, 62 µm mesh size) at the Northwind Abyssal Plain and southwestern Canada Basin in Septem- 5 ber 2013.
    [Show full text]
  • Radiolarians in the Adriatic Sea Plankton (Eastern Mediterranean)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ISSN: 0001-5113 ACTA ADRIAT., UDC: 593.14(262.3)”1993/1995” AADRAY 53(2): 189 - 212, 2012 Radiolarians in the Adriatic Sea plankton (Eastern Mediterranean) frano kRŠINIĆ1* and Ana kRŠINIĆ2 1Institute of Oceanography and Fisheries Split, P. P. 500, Split, Croatia 2University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Department of Mineralogy, Petrology and Mineral resources, Pierottijeva 6, 10000 Zagreb, Croatia *Corresponding author: [email protected] Samples for the study of radiolarians in the Southern Adriatic were collected during five cruises at three stations along the Dubrovnik transect (stations S-100 to S-1000) from April 1993 through February 1995. Moreover, samples were collected during 21 cruises at the deepest station, S-1000/1200, from June 2001 through December 2009. Samples were taken in 2 to 8 vertical layers with a Nansen net 53 µm equipped with a closing system. In the central part of the southern Adriatic Pit, a total of 95 radiolarian taxa were recorded: 32 species of spumellaria, 46 species of nassellaria and 17 species of phaeodaria. The present research added 49 taxa to the known radiolarian fauna of the Adriatic Sea. The most common species were the phaeodarian Challengeria xiphodon, the spumellarian Stylodictya multispina and the nassellarian Cornutella profunda, which were present in 99% of the vertical series. Radiolarians were rarely present in coastal areas and in the central Adriatic, whereas the highest abundances were recorded in the deepest parts of the south Adriatic Pit. Phaeodaria represented 20-86 % of the total average abundance.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 38
    31. RADIOLARIA FROM THE NORWEGIAN SEA, LEG 38 OF THE DEEP SEA DRILLING PROJECT Kjell R. Bj^rklund, Geological Institute Department B., University of Bergen, 5014-Bergen-University, Norway INTRODUCTION North Atlantic Ocean, Benson (1972) was able to use the established radiolarian stratigraphy for an age The high latitudes of the Arctic region were first determination of the sediments. Thus, one of the main visited by D/V Glomar Challenger in 1974, on Leg 38 of objectives of this paper was to search out the radio- the Deep Sea Drilling Project, to the Norwegian Sea. larian stratigraphy, and see if the already established Seventeen sites were selected, and 17 holes were drilled zonation from lower latitudes could be used with faunal during this leg (Figure 1, see Table 1 in Chapter 1, this assemblages recovered from the Norwegian Sea. volume) Based on reports from Russian workers, Lipman For radiolarian studies, the Norwegian Sea is a virgin (1950), Kozlova and Gorbovetz (1966), and Bjprklund area, as no information is available on either radio- and Kellogg (1972), the present author recognized larian stratigraphy or biogeography from pre-Holo- similarities in the faunal assemblages from Siberia and cene sediments. The distribution of radiolarians in the the V^ring Plateau. Since these faunal assemblages are surface sediments of the Norwegian-Greenland Sea is quite different from the assemblages reported by Ben- discussed in only four papers. Stadum and Ling (1969) son (1972) and Petrushevskaya and Kozlova (1972), reported on the recent distribution of phaeodarians and DSDP Legs 12 and 14 from the northern and equatorial their state of preservation, Petrushevskaya (1969) and Atlantic, respectively, the author concludes that the Petrushevskaya and Bjyfrklund (1974) dealt with the radiolarian population in the North Atlantic and the distribution of polycystine radiolarians from surface Norwegian-Greenland Sea must have somehow been sediments.
    [Show full text]
  • Classification and Distribution of South Atlantic Recent Polycystine Radiolaria Introduction
    CLASSIFICATION AND DISTRIBUTION OF SOUTH ATLANTIC RECENT POLYCYSTINE RADIOLARIA1 Demetrio Boltovskoy ABSTRACT This paper presents a review of the current knowledge on the identification and distribution of Recent polycystine Radiolaria so far recorded, or presumed to occur, in the South Atlantic Ocean (0° to 60°S, from the South American coasts to the coasts of Africa). However, because the area concerned covers from equatorial to Antarctic waters, and since polycystine radiolarians are geographically (but not environmentally) cosmopolitan, the review covers most common species worldwide. Illustrations, short diagnoses, bibliographic references and distributional data (both geographic and vertical) are included for 164 polycystine morphotypes (species-groups, species, and subspecific categories). Introductory remarks offer general data on radiolarian anatomy, biology, ecology, and reproduction. Methodological aspects are dealt with in some detail, with special emphasis being placed on comparative aspects of the environmental and paleoenvironmental information conveyed by planktonic materials, sediment trap samples, and sedimentary deposits. Known or assumed geographic and vertical species-specific distribution ranges are summarized, as well as available information on absolute abundances in the water-column (plankton and sediment trap samples) and in the surface sediments. The illustrated glossary aimed at the less experienced student defines the terms and morphological details useful for diagnostic purposes. Demetrio Boltovskoy, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", and CONICET, Argentina KEYWORDS: Radiolaria, Polycystina, identification, distribution, Recent, plankton, review 1This article constitutes a modified version of the chapter "Radiolaria Polycystina", originally prepared for the book "South Atlantic Zooplankton" (D.
    [Show full text]
  • And Phaeodarian (Phylum Cercozoa) in the Eastern Indian Ocean
    biology Article The First Record and Classification of Planktonic Radiolarian (Phylum Retaria) and Phaeodarian (Phylum Cercozoa) in the Eastern Indian Ocean Sonia Munir 1 , Jun Sun 1,2,* and Steve L. Morton 3 1 Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China; [email protected] 2 College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China 3 National Ocean Service, NOAA, 331 Fort Johnson Road, Charleston, SC 29412, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-60-601-116 Simple Summary: Phylum Retaria and Phylum Cercozoa consists of the siliceous planktonic organisms, commonly referred to as Radiolarians, were investigated from 200 m depth to the surface in the east- ern Indian Ocean (80.00◦–96.10◦ E, 10.08◦ N–6.00◦ S) during a 2 months cruise (10 April–13 May 2014). Samples collected from 44 locations were analyzed by using both light and electron microscopy. Out of 168 taxa, 60 newly recorded species from the groups i.e., Acantharia, Collodaria, Pheodaria, Taxopodida and Polycystinea were recorded for the first time. Abstract: Siliceous planktonic species of the phyla Retaria and Cercozoa were investigated from the surface to a 200 m depth around the eastern Indian Ocean (80.00◦–96.10◦ E, 10.08◦ N–6.00◦ S) during a 2-month cruise (10 April–13 May 2014). These species are commonly referred to as Radiolarians Citation: Munir, S.; Sun, J.; Morton, and are found in all of the world’s oceans; however, this is a detailed investigation of the species’ S.L.
    [Show full text]