Creatine and Phosphocreatine: a Review of Their Use in Exercise and Sport Joseph F

Total Page:16

File Type:pdf, Size:1020Kb

Creatine and Phosphocreatine: a Review of Their Use in Exercise and Sport Joseph F Creatine and Phosphocreatine: A Review of Their Use in Exercise and Sport Joseph F. Clark, PhD, ATC Objective: Creatine and phosphocreatine (PCr) are impor- buffer, protecting the adenosine triphosphate (ATP) concentra- tant compounds in the normal energy metabolism of muscle. tion. Maintaining muscle nucleotides therefore enhances exer- Recently, it has been shown that dietary creatine (5 to 20 g/day) cise performance and recovery. There have been reports that can increase muscle creatine and PCr, with enhancement in PCr protects the cells from ischemic damage and decreases anaerobic exercise performance after two weeks of adminis- the loss of nucleotides by stabilizing cell membranes. Indeed, tration caused by an increase in anaerobic capacity. intravenous PCr (2-4 g/day) has been administered to cyclists, Data Sources: MEDLINE was searched from 1983 to 1996 resulting in a faster recovery time between training sessions. using key word "creatine" along with "humans," "muscle," Conclusions/Recommendations: It is becoming evident "exercise," and "transport." Also, APStracts, the American that oral creatine supplementation may yield certain benefits to Physiology Society search engine for abstracts, was searched enhance the athlete's performance during maximal anaerobic from 1994 to 1996. exercise and interval training. Data Synthesis: Creatine is transported into the muscle cell Key Words: ATP, ADP, muscle, energy metabolism, creatine by a specific transporter, resulting in increased intracellular kinase, anaerobic exercise creatine and PCr. The PCr is capable of acting as an energy R ecently there has been a great deal of interest in the use neously to form a rapid interconversion of PCr and ATP, which of creatine and, to a lesser extent, phosphocreatine maintains an equilibrium in the muscle. This reaction is readily (PCr) in sports medicine and athletic training. Various reversible and may be used to buffer the ATP concentration by published works claim exercise enhancement and specific rephosphorylating ADP from the energy contained within the benefits with the administration of creatine and PCr to ath- PCr molecule. The other significant effect of the reaction is to letes,1-13 but their utility and possible side effects still need to keep the ADP concentration relatively low in the muscle be examined in greater detail. There are, however, various (which, if elevated, will slow cross-bridge cycling).19 As much reports in the literature in which creatine administration is used as 70% of the immediate high-energy stores contained within for therapeutic purposes 14,15 or in which the absence or skeletal muscle are in the form of PCr.20.21 The total creatine depletion of creatine is detrimental.16 This review is an attempt concentration (PCr + creatine) in striated muscle is about 30 to summarize the current knowledge regarding the application ,imoUg muscle, which represents 4 grams of creatine per of creatine and/or PCr with a focus on sports medicine and kilogram of Type I muscle fibers. For this reason, creatine can muscle physiology. be described as an extract of muscle solids. The cellular The creatine/PCr system plays an essential role in the normal concentration of creatine is determined by specific transporters energy metabolism of muscle because it acts as a buffer for the that transport creatine into the cell with sodium (Na+) against adenosine triphosphate (ATP) concentration.17'18 It can also its concentration gradient.222 25 The concentration of PCr is prevent a rise in the adenosine diphosphate (ADP) concentra- determined by the equilibrium constant of the CK reaction.19 tion, which can slow cross-bridge cycling. In muscle, creatine Therefore, the concentration of PCr in muscle is dependent is reversibly phosphorylated by the enzyme creatine kinase upon the ATP and total creatine concentrations. (CK) in the following reaction: CK ATP + creatine <=======> PCr + ADP + HW. (1) CREATINE SYNTHESIS Creatine is synthesized in the liver and kidney and released The H+ produced in this reaction also means that the CK into the blood stream26 to be actively taken up by the muscle reaction is capable of buffering the pH of exercising muscle. cells via specific transport protein(s). The liver plays an Though important, the pH buffering by CK will not be important role in the control of creatine content in the body addressed in this paper. There are two isoenzymes of creatine because it methylates guanidinoacetate to produce creatine15 kinase found in skeletal muscle and both are required for for release into the blood stream. This methylation reaction normal muscle function. There is a cytosolic form of creatine utilizes the amino acid methionine. Guanidinoacetate is pro- kinase and a mitochondrial form, and they function simulta- duced from the amino acids glycine and arginine in the following reaction: Joseph F. Clark is a lecturer at St. Anne's College, Oxford, and is affiliated with the Department of Biochemistry, Biochemical and Clinical glycine + arginine ======> Magnetic Resonance Spectroscopy Unit, South Parks Rd, University of Oxford, Oxford OX1 3QU, England guanidinoacetate + ornithine. (2) Journal of Athletic Training 45 NH2+ O0 11 NH2 -C-N-CH2-C=O CH3 Creatine O' NH2+ 0' e04 Time 11 I Fig 2. A schematic representation of the relative concentration O=P-NH-C-N-CH2-C=O changes that occur in muscle during two bouts of exercise. The PCr concentration at the start of the anaerobic exercise is greater in the muscle with creatine supplementation compared to control. O' CH3 The PCr concentration falls rapidly in both groups as the PCr molecule is used to buffer the ATP concentration. When exercise stops and the muscle is allowed to recover, the rate of PCr Phosphocreatine recovery is faster in the muscles with creatine supplementation Fig 1. The chemical structures of the creatine molecule (top) and its (this is explained in Fig 3). Furthermore, when the anaerobic phosphorylated counterpart phosphocreatine (bottom). exercise is prolonged in the second bout of exercise, the ATP concentration is better maintained with creatine supplementation. The ATP buffering capacity of the muscle is enhanced due to the The ornithine is used in the urea cycle and the guanidinoacetate increased PCr concentration in the muscle. Note: the rates of is methylated to form creatine (Fig 1; creatine molecule). concentration changes during exercise are dependent upon inten- Therefore the synthesis of creatine requires three amino acids: sity of the exercise. For maximal anaerobic exercise, such as a glycine, arginine, and methionine. The net synthesis of creatine sprint, the entire right hand box of this figure would take about 15 seconds. in the body is 1 to 2 g/day. CREATINE SUPPLEMENTATION about 70% of the people studied had an increase in total muscle creatine and exercise enhancement.20 This was attributed to the Harris et al21'27 have shown that feeding creatine at 2 to 5 fact that some of the athletes (30%) had creatine levels near the g/day increases intracellular creatine and PCr in human mus- physiological maximum. Another study showed that increased cle.3 Greenhaff and colleagues have extended these observa- PCr does not change the maximal force of contraction.27 tions using 5 to 20 g/day creatine.9 28'29 They fed volunteers 5 g Increases in maximal force may occur if there is an anabolic of creatine four times a day with a daily total of 20 g. This is action of creatine or PCr, but these observations have not been considered the loading dose and is decreased to 2 to 5 g/day fully evaluated.14'30 (maintenance dose) after 6 to 14 days, which is continued Active uptake of creatine has been found in all muscle cells throughout the period of training. If athletes are given lower studied, including skeletal, heart, and smooth muscles.19'25'3' doses (2-3 g/day), without the loading dose, there is still Creatine has been shown to have an anabolic effect on muscle increased muscle creatine but with a slower rate of accumula- tissues'4'30 because it caused an increase in protein synthesis.30 tion. The current evidence is that the best loading of muscle Elevation of PCr in the muscle cell is also capable of creatine occurs during normal training and occurs concomitant stimulating protein synthesis in the cell organelles. Interest- with a low-fat, high-carbohydrate diet.29 ingly, Bessman and Mohan30 likened the PCr stimulation of In the intestine, creatine is absorbed unchanged from the protein synthesis to that of exercise or insulin-stimulated lumen and passes directly into the blood stream. Following oral growth. Even in humans there was a 46% increase in the size creatine administration serum creatine rises, and the amount of of Type II muscle fibers in gyrate atrophy patients fed 1.5 creatine taken into the cells increases, leading to higher g/day of creatine for one year.'4 Conversely, inhibition of intracellular PCr levels" 2 (See Fig 2). This extra PCr enhances normal creatine metabolism prevents normal muscle growth as anaerobic output and muscle peak torque production28 (as well as decreases protein and lipid synthesis.'6'32 Oral admin- measured using a Cybex II isokinetic dynamometer; Lumex, istration of creatine monohydrate to men and women has been Inc., Ronkonkoma, NY) in the working skeletal muscle. This found to lower plasma total cholesterol (6%), triacylglycerols was seen in athletes fed 24 g/day for 5 days, and the exercise (22%), and very-low-density lipoprotein-C (23%) after 56 days protocol was five sets of quadriceps contractions, with 30 of administration (5 g/day).33 repetitions in each set. Part of the reason for the increase in muscle peak torque production was attributed to the acceler- CREATINE TRANSPORT ated rate of PCr resynthesis. Greenhaff et all' pointed out, however, that the dietary supplementation with creatine did not Creatine is actively taken up into the cell via a specific increase total muscle creatine in all athletes.
Recommended publications
  • Altered Metabolome of Lipids and Amino Acids Species: a Source of Early Signature Biomarkers of T2DM
    Journal of Clinical Medicine Review Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM Ahsan Hameed 1 , Patrycja Mojsak 1, Angelika Buczynska 2 , Hafiz Ansar Rasul Suleria 3 , Adam Kretowski 1,2 and Michal Ciborowski 1,* 1 Clinical Research Center, Medical University of Bialystok, Jana Kili´nskiegoStreet 1, 15-089 Bialystok, Poland; [email protected] (A.H.); [email protected] (P.M.); [email protected] (A.K.) 2 Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] 3 School of Agriculture and Food System, The University of Melbourne, Parkville, VIC 3010, Australia; hafi[email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Diabetes mellitus, a disease of modern civilization, is considered the major mainstay of mortalities around the globe. A great number of biochemical changes have been proposed to occur at metabolic levels between perturbed glucose, amino acid, and lipid metabolism to finally diagnoe diabetes mellitus. This window period, which varies from person to person, provides us with a unique opportunity for early detection, delaying, deferral and even prevention of diabetes. The early detection of hyperglycemia and dyslipidemia is based upon the detection and identification of biomarkers originating from perturbed glucose, amino acid, and lipid metabolism. The emerging “OMICS” technologies, such as metabolomics coupled with statistical and bioinformatics tools, proved to be quite useful to study changes in physiological and biochemical processes at the metabolic level prior to an eventual diagnosis of DM.
    [Show full text]
  • Analysis of the Effects of Three Commercially Available Supplements on Performance, Exercise Induced Changes and Bio-Markers in Recreationally Trained Young Males
    Analysis of the effects of three commercially available supplements on performance, exercise induced changes and bio-markers in recreationally trained young males Robert Cooper A thesis is submitted in partial fulfilment of the requirements of the University of Greenwich for the Degree of Doctor of Philosophy This research programme was carried out in collaboration with GlaxoSmithKline Maxinutrition division December 2013 School of Science University of Greenwich, Medway Campus Chatham Maritime, Kent ME4 4TB, UK i DECLARATION “I certify that this work has not been accepted in substance for any degree, and is not concurrently being submitted for any degree other than that of Doctor of Philosophy being studied at the University of Greenwich. I also declare that this work is the result of my own investigations except where otherwise identified by references and that I have not plagiarised the work of others”. Signed Date Mr Robert Cooper (Candidate) …………………………………………………………………………………………………………………………… PhD Supervisors Signed Date Dr Fernando Naclerio (1st supervisor) Signed Date Dr Mark Goss-Sampson (2nd supervisor) ii ACKNOWLEDGEMENTS Thank you to my supervisory team, Dr Fernando Naclerio, Dr Mark Goss Sampson and Dr Judith Allgrove for their support and guidance throughout my PhD. Particular thanks to Dr Fernando Naclerio for his tireless efforts, guidance and support in developing the research and my own research and communication skills. Thank you to Dr Eneko Larumbe Zabala for the statistics support. I would like to take this opportunity to thank my wonderful mother and sister who continue to give me the support and drive to succeed. Also on a personal level thank you to my amazing fiancée, Jennie Swift.
    [Show full text]
  • Open Full Page
    [CANCER RESEARCH 46, 3768-3774, August 1986] 31PNuclear Magnetic Resonance Study of a Human Colon Adenocarcinoma Cultured Cell Line1 Franck Desmoulin, Jean-Philippe Galons, Paul Cantoni, Jacques Marvaldi, and Patrick J. Cozzone2 Laboratoire de Biologie Physicochimique, Institut de Chimie Biologique, Universitéd'Aix-Marseille, Place Victor Hugo 13003 Marseille (France) ABSTRACT Saccharomyces cerevisiae (14-16). Investigation of mammalian cell lines has received only scant appraisal because of several •"Pnuclear magnetic resonance (NMR) spectroscopy has been used to technical difficulties. Work has been limited to a few cell types, monitor the energy metabolism in a human colon adenocarcinoma cell essentially HeLa cells (17, 18), Ehrlich ascites tumor cells (19), line (HT 29). NMR spectra were recorded at 80.9 MHz on approximately 2.5 x 10" cells continuously perfused with culture medium within a 20- and normal and transformed fibroblasts (20, 21). In addition, a detailed analysis of the metabolite content of radiation-induced iiini NMR sample tube. Typical NMR spectra display a series of well-resolved resonances fibrosarcoma cells by using multinuclear NMR has been re assigned to nucleoside triphosphates (mainly adenosine S'-triphosphate), cently published (22). uridine diphosphohexose derivatives (uridine 5'-diphosphate-A/-acetyl- A major difficulty to overcome in the study of perfused cells glucosamine, uridine 5/-diphosphate-Ar-acetylgalactosamine, uridine 5'- is the preservation of physiological conditions in the NMR diphosphate-glucose), intra- and extracellular inorganic phosphate, and sample tube where the accumulation of metabolite by-products phosphomonoesters (mainly phosphorylcholine and glucose 6-phos- and the required bubbling of gas may affect the viability of the phate).
    [Show full text]
  • Identification of the Specific Spoilage Organism in Farmed Sturgeon
    foods Article Identification of the Specific Spoilage Organism in Farmed Sturgeon (Acipenser baerii) Fillets and Its Associated Quality and Flavour Change during Ice Storage Zhichao Zhang 1,2,†, Ruiyun Wu 1,† , Meng Gui 3, Zhijie Jiang 4 and Pinglan Li 1,* 1 Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; [email protected] (Z.Z.); [email protected] (R.W.) 2 Jiangxi Institute of Food Inspection and Testing, Nanchang 330001, China 3 Beijing Fisheries Research Institute, Beijing 100083, China; [email protected] 4 NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Institute for Drug Control, Beijing 102206, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6273-8678 † The authors contributed equally to this work. Abstract: Hybrid sturgeon, a popular commercial fish, plays important role in the aquaculture in China, while its spoilage during storage significantly limits the commercial value. In this study, the specific spoilage organisms (SSOs) from ice stored-sturgeon fillet were isolated and identified by analyzing their spoilage related on sensory change, microbial growth, and biochemical properties, including total volatile base nitrogen (TVBN), thiobarbituric acid reactive substances (TBARS), and proteolytic degradation. In addition, the effect of the SSOs on the change of volatile flavor compounds was evaluated by solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The results showed that the Pseudomonas fluorescens, Pseudomonas mandelii, Citation: Zhang, Z.; Wu, R.; Gui, M.; and Shewanella putrefaciens were the main SSOs in the ice stored-sturgeon fillet, and significantly affect Jiang, Z.; Li, P.
    [Show full text]
  • The Effect of Short-Term Combination of Hmb (Beta
    Brazilian Journal of Biomotricity ISSN: 1981-6324 [email protected] Universidade Iguaçu Brasil Faramarzi, Mohammad; Nuri, Reza; Banitalebi, Ebrahim THE EFFECT OF SHORT -TERM COMBINATION OF HMB (BETA-HYDROXY-BETA- METHYLBUTYRATE) AND CREATINE SUPPLEMENTATION ON ANAEROBIC PERFORMANCE AND MUSCLE INJURY MARKERS IN SOCCER PLAYERS Brazilian Journal of Biomotricity, vol. 3, núm. 4, diciembre, 2009, pp. 366-375 Universidade Iguaçu Itaperuna, Brasil Available in: http://www.redalyc.org/articulo.oa?id=93012717009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Faramarzi et al.: Combination of HMB and Creatine supplementation www.brjb.com.br ORIGINAL PAPER THE EFFECT OF SHORT –TERM COMBINATION OF HMB (BETA- HYDROXY-BETA-METHYLBUTYRATE) AND CREATINE SUPPLEMENTATION ON ANAEROBIC PERFORMANCE AND MUSCLE INJURY MARKERS IN SOCCER PLAYERS Mohammad Faramarzi, Reza Nuri, and Ebrahim Banitalebi Department of Physical Education and Sport Sciences, Faculty of Human Sciences, University of Shahrekord, Iran Corresponding author: Mohammad Faramarzi (PhD) Assistant Professor in Exercise Physiology Department of Physical Education and Sport Sciences, Faculty of Human Sciences, University of Shahrekord, Iran Phone: 0098- 381- 4424411 Cell: 0098- 9133040196 Fax: 0098- 381- 4424411 Email: [email protected] Submitted for publication: Nov 2009 Accepted for publication: Dec 2009 ABSTRACT FARAMARZI, M.; NURI, R.; BANITALEBI, E. The effect of short –term combination of HMB (beta-hydroxy- beta-methylbutyrate) and creatine supplementation on anaerobic performance and muscle injury markers in soccer players. Brazilian Journal of Biomotricity, v.
    [Show full text]
  • Protective Effect of the Energy Precursor Creatine Against Toxicity of Glutamate and ␤-Amyloid in Rat Hippocampal Neurons
    Journal of Neurochemistry Lippincott Williams & Wilkins, Inc., Philadelphia © 2000 International Society for Neurochemistry Protective Effect of the Energy Precursor Creatine Against Toxicity of Glutamate and ␤-Amyloid in Rat Hippocampal Neurons Gregory J. Brewer and *Theo W. Wallimann Departments of Medical Microbiology/Immunology and Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, U.S.A.; and *Institute for Cell Biology, Swiss Federal Institute of Technology, Zurich, Switzerland Abstract: The loss of ATP, which is needed for ionic (Manos et al., 1991; Molloy et al., 1992) and in vivo homeostasis, is an early event in the neurotoxicity of (Hemmer et al., 1994; Kaldis et al., 1996), CK isozyme glutamate and ␤-amyloid (A␤). We hypothesize that cells BB catalyzes the reversible conversion of PCr and ADP supplemented with the precursor creatine make more to ATP and Cr to manage different aspects of high- phosphocreatine (PCr) and create larger energy reserves energy demands in the brain (Hemmer and Wallimann, with consequent neuroprotection against stressors. In serum-free cultures, glutamate at 0.5–1 mM was toxic to 1993; Chen et al., 1995). On the other hand, mitochon- embryonic hippocampal neurons. Creatine at Ͼ0.1 mM drial CK catalyzes the reversible conversion of Cr and greatly reduced glutamate toxicity. Creatine (1 mM) could ATP to ADP and PCr to generate energy reserves in the be added as late as 2 h after glutamate to achieve pro- cytoplasm (Wyss et al., 1992). PCr reserves are depleted tection at 24 h. In association with neurotoxic protection even more rapidly than ATP during ischemia (Passon- by creatine during the first 4 h, PCr levels remained neau and Lowry, 1971) owing to their conversion to ATP constant, and PCr/ATP ratios increased.
    [Show full text]
  • List of Supplementary Materials
    List of Supplementary Materials: Supplemental Experimental Procedures Supplemental Figures Supplemental Table Supplemental Experimental Procedures Cell proliferation and death assays Cells were placed in 96-well plates at 2x103 cells/well in 100 l of growth medium and then incubated for 48 hours in each treatment condition. Cell proliferation was examined with Cell Count Reagent SF (Nacalai Tesque) according to the manufacturer’s instructions. The absorbance of the treated and untreated cells was measured with a microplate reader (Thermo Scientific) at 450 nm. Cell death was assessed by trypan blue exclusion (Nacalai Tesque). Western blotting Cultured cells or snap-frozen tissue samples were lysed and homogenized with a Lysis buffer AM1 and phosphatase inhibitor and protease inhibitor cocktail (Active Motif). Equal amounts of protein extracts were separated by electrophoresis on 4-12% NuPAGE Bis-Tris Mini Gels (Invitrogen) and then transferred to a nitrocellulose membrane (GE Healthcare) with the XCell II Blot Module (Invitrogen). The membrane was blocked for 1 hour in Tris- buffered saline containing 0.1% Tween20 and 5% nonfat milk and then probed with various primary antibodies, followed by secondary antibodies conjugated to horseradish peroxidase (HRP). The immunoreactivity was revealed with Super Signal West Pico Chemiluminescent Substrate or the West Femto Trial Kit (Thermo Scientific). TUNEL staining Cells were placed in 6-well chamber slides at 1x105 cells/well in 5 ml of growth medium and then incubated for 48 hours in each treatment condition. Apoptotic cells were evaluated with the In Situ Cell Death Detection Kit, Fluorescein and following the manufacturer’s protocol (Roche). Nuclei were stained blue by 4′, 6-diamidino-2-phenylindole (DAPI) (Invitrogen).
    [Show full text]
  • Phenotype Microarrays™
    Phenotype MicroArrays™ PM1 MicroPlate™ Carbon Sources A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Negative Control L-Arabinose N-Acetyl -D- D-Saccharic Acid Succinic Acid D-Galactose L-Aspartic Acid L-Proline D-Alanine D-Trehalose D-Mannose Dulcitol Glucosamine B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 D-Serine D-Sorbitol Glycerol L-Fucose D-Glucuronic D-Gluconic Acid D,L -α-Glycerol- D-Xylose L-Lactic Acid Formic Acid D-Mannitol L-Glutamic Acid Acid Phosphate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D-Glucose-6- D-Galactonic D,L-Malic Acid D-Ribose Tween 20 L-Rhamnose D-Fructose Acetic Acid -D-Glucose Maltose D-Melibiose Thymidine α Phosphate Acid- -Lactone γ D-1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 L-Asparagine D-Aspartic Acid D-Glucosaminic 1,2-Propanediol Tween 40 -Keto-Glutaric -Keto-Butyric -Methyl-D- -D-Lactose Lactulose Sucrose Uridine α α α α Acid Acid Acid Galactoside E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 L-Glutamine m-Tartaric Acid D-Glucose-1- D-Fructose-6- Tween 80 -Hydroxy -Hydroxy -Methyl-D- Adonitol Maltotriose 2-Deoxy Adenosine α α ß Phosphate Phosphate Glutaric Acid- Butyric Acid Glucoside Adenosine γ- Lactone F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Glycyl -L-Aspartic Citric Acid myo-Inositol D-Threonine Fumaric Acid Bromo Succinic Propionic Acid Mucic Acid Glycolic Acid Glyoxylic Acid D-Cellobiose Inosine Acid Acid G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Glycyl-L- Tricarballylic L-Serine L-Threonine L-Alanine L-Alanyl-Glycine Acetoacetic Acid N-Acetyl- -D- Mono Methyl Methyl Pyruvate D-Malic Acid L-Malic Acid ß Glutamic Acid Acid
    [Show full text]
  • United States Patent Office 3,506,642
    United States Patent Office Patented Apr.3,506,642 14, 1970 2 3,506,642 inversely proportional to the cationic content of the salt. wv vs. However, the stability of these acid salts also decreases STABLE ORATE HEPARNOID with decreasing cationic content so that the formulation Teow Y. Koh and Kekhusroo R. Bharucha, Toronto, On- is necessarily a compromise between stability and tario, Canada, assignors to Canada Packers Limited, 5 heparinic activity. Toronto, Ontario, Canada No Drawing. Filed July 3, 1967, Ser. No. 650,621 SUMMARY OF THE INVENTION Int. C. C08b. 19/03, 19/08 O We have now discovered that heparinic acid forms U.S. C. 260-209 19 Claims salts or complexes (hereinafter collectively designated as 10 heparinoid complexes) with a number of weakly basic or amphoteric organic compounds to provide products ABSTRACT OF THE DISCLOSURE which are not only quite stable but which when orally This invention relates to new stable, orally active administered result in systemic anticoagulant effect of heparinoid complexes, prepared by reacting heparinic high order. o acid or other acid heparinoids with non-toxic organic 15 The expression "oral administration,” as used herein, compounds having weakly basic or amphoteric properties means administration by mouth and includes introduc and characterized by a base strength pKb in the range tion of therapeutic compositions containing the new of from about 7.0 to 12.5 or by an isoelectric point pI heparinoid complexes into the sublingual or buccal below about 9.7, to methods for preparing and using regions for absorption therefrom as well as the ad these new heparinoid complexes, and to therapeutic com- 20 ministration in the form of enteric-coated compositions positions containing them.
    [Show full text]
  • Effect of Guanidinoacetic Acid Supplementation on Nitrogen Retention and Methionine Methyl Group Flux in Growing Steers Fed Corn-Based Diets
    Efficacy of guanidinoacetic acid supplementation to growing cattle and relative bioavailability of guanidinoacetic acid delivered ruminally or abomasally by Hannah Fae Speer B.S., Fort Hays State University, 2015 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Animal Sciences and Industry College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2019 Approved by: Major Professor Evan C. Titgemeyer Copyright © Hannah Speer 2019. Abstract Two experiments were conducted to assess the value of guanidinoacetic acid (GAA) as a feed additive for growing cattle. The first experiment utilized 7 ruminally cannulated Holstein steers (280 ± 14 kg) in a 5 × 5 Latin square design and evaluated relative bioavailability of GAA. Treatments were continuous ruminal or abomasal infusion of 0, 10, or 20 g/d GAA, and blood and urine samples were collected on the final day of each period for analysis of creatine, creatinine, and GAA concentrations. Plasma and urinary creatine concentrations were used as the primary response criteria to calculate ruminal bypass value of GAA by slope-ratio methodology; values were 47% and 49%, respectively. In Exp. 2, effects of GAA supplementation on N retention and methionine (Met) methyl group flux in steers fed corn-based diets were determined utilizing 6 ruminally cannulated Holstein steers (256 ± 14 kg) in a 6 × 6 Latin square design. Factorial treatments were 2 levels of Met (0 or 5 g/d) and 3 levels of GAA (0, 7.5, or 15 g/d) delivered by continuous abomasal infusion. Periods were 10 d in length and included 3 d for total fecal and urine collections; blood samples were collected and Met flux was measured on the final day of each period.
    [Show full text]
  • Effect of the Combination of Creatine Monohydrate Plus HMB
    nutrients Review Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review Julen Fernández-Landa 1 , Julio Calleja-González 1, Patxi León-Guereño 2 , Alberto Caballero-García 3, Alfredo Córdova 4 and Juan Mielgo-Ayuso 4,* 1 Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; [email protected] (J.F.-L.); [email protected] (J.C.-G.) 2 Faculty of Psychology and Education, University of Deusto, Campus of Donostia-San Sebastián, 20012 San Sebastián, Spain; [email protected] 3 Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid. Campus de Soria, 42003 Soria, Spain; [email protected] 4 Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, 42003 Soria, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-975-129-187 Received: 13 September 2019; Accepted: 18 October 2019; Published: 20 October 2019 Abstract: Although there are many studies showing the isolated effect of creatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB), it is not clear what effect they have when they are combined. The main purpose of this systematic review was to determine the efficacy of mixing CrM plus HMB in comparison with their isolated effects on sports performance, body composition, exercise induced markers of muscle damage, and anabolic-catabolic hormones. This systematic review was carried out in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement guidelines and the PICOS model, for the definition of the inclusion criteria.
    [Show full text]
  • Metabolite Identification in Fecal Microbiota Transplantation Mouse Livers and Combined Proteomics with Chronic Unpredictive
    Li et al. Translational Psychiatry (2018) 8:34 DOI 10.1038/s41398-017-0078-2 Translational Psychiatry ARTICLE Open Access Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers Bo Li1,2,3,KenanGuo4,LiZeng1,2, Benhua Zeng4,RanHuo1,2,3, Yuanyuan Luo1,2,5, Haiyang Wang1,2,MeixueDong1,2, Peng Zheng1,2,6, Chanjuan Zhou1,2,JianjunChen1,2,YiyunLiu1,2,ZhaoLiu1,2,LiangFang5,HongWei2 and Peng Xie2,3,5,6,7 Abstract Major depressive disorder (MDD) is a common mood disorder. Gut microbiota may be involved in the pathogenesis of depression via the microbe–gut–brain axis. Liver is vulnerable to exposure of bacterial products translocated from the gut via the portal vein and may be involved in the axis. In this study, germ-free mice underwent fecal microbiota transplantation from MDD patients and healthy controls. Behavioral tests verified the depression model. Metabolomics using gas chromatography–mass spectrometry, nuclear magnetic resonance, and liquid chromatography–mass spectrometry determined the influence of microbes on liver metabolism. With multivariate statistical analysis, 191 metabolites were distinguishable in MDD mice from control (CON) mice. Compared with CON mice, MDD mice showed lower levels for 106 metabolites and higher levels for 85 metabolites. These metabolites are associated with 1234567890():,; 1234567890():,; lipid and energy metabolism and oxidative stress. Combined analyses of significantly changed proteins in livers from another depression model induced by chronic unpredictive mild stress returned a high score for the Lipid Metabolism, Free Radical Scavenging, and Molecule Transports network, and canonical pathways were involved in energy metabolism and tryptophan degradation.
    [Show full text]