Page 1 of 110 Original Research Communication The σ1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control María Rodríguez-Muñoz1, Pilar Sánchez-Blázquez1, Raquel Herrero-Labrador1, Ricardo Martínez-Murillo1, Manuel Merlos2, José Miguel Vela2, Javier Garzón1 1Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce, 37. 28002 Madrid, Spain. 2Drug Discovery & Preclinical Development, Esteve. Scientific Park of Barcelona, Bardiri y Reixac 4-8, 08028, Barcelona, Spain. Running head: σ1R engages NMDAR control on MOR Correspondence to: Javier Garzón. Neurofarmacología, Instituto Cajal, Avenida Doctor Arce 37, 28002 Madrid, Spain. Tel: 34 91 5854733, Fax: 34 91 5854754. E- mail:
[email protected] Antioxidants & Redox Signaling Word count: 6950 Reference number: 70 Grayscale Illustrations: Figures 5, 6, 8 and 9 Color Illustrations: Figures 3 and 4 Color online, B&W print: Figures 1, 2, 7, and 10 The 1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA negative control (doi: 10.1089/ars.2014.5993) This article has been peer-reviewed and accepted for publication, but yet to undergo copyediting proof correction. The final published version may differ from this proof. 1 Page 2 of 110 2 Abstract Aims: The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N- methyl-D-aspartate receptors (NMDARs) exert on opioid antinociception.