The Hahn–Banach Theorems

Total Page:16

File Type:pdf, Size:1020Kb

The Hahn–Banach Theorems Universitext Series Editors Sheldon Axler Department of Mathematics, San Francisco State University San Francisco, California, USA Vincenzo Capasso Dipartimento di Matematica, Università degli Studi di Milano Milano, Italy Carles Casacuberta Depto. Àlgebra i Geometria, Universitat de Barcelona Barcelona, Spain Angus Mcintyre Queen Mary University of London, London, United Kingdom Kenneth Ribet Department of Mathematics, University of California Berkeley, California, USA Claude Sabbah CNRS, Ecole polytechnique Centre de mathématiques Palaiseau, France Endre Süli Worcester College, University of Oxford, Oxford, United Kingdom Wojbor A. Woyczynski Department of Mathematics, Case Western Reserve University Cleveland, Ohio, USA Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class- tested by their author, may have an informal, personal even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, to very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 Adam Bowers • Nigel J. Kalton An Introductory Course in Functional Analysis 2123 Adam Bowers Nigel J. Kalton (deceased) Department of Mathematics Department of Mathematics University of California, San Diego University of Missouri, Columbia La Jolla, CA Columbia, MO USA USA ISSN 0172-5939 ISSN 2191-6675(electronic) Universitext ISBN 978-1-4939-1944-4 ISBN 978-1-4939-1945-1 (eBook) DOI 10.1007/978-1-4939-1945-1 Library of Congress Control Number: 2014955345 Springer New York Heidelberg Dordrecht London © Springer Science+Business Media, LLC 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To the memory of Nigel J. Kalton (1946–2010) Foreword Mathematicians are peculiar people who spend their life struggling to understand the great book of Mathematics, and find it rewarding to master a few pages of its daunting and ciphered chapters. But this book was wide open in front of Nigel Kalton, who could browse through it with no apparent effort, and share with his colleagues and students his enlightening vision. That book is now closed and we are left with the grief, and the duty to follow Nigel’s example and to keep working, no matter what. Fortunately, his mathematical legacy is accessible, which includes the last graduate course he taught in Columbia during the AcademicYear 2009–2010. Adam Bowers, a post-doctoral student during that year, gathered very careful notes of all classes and agreed with Nigel that these notes would eventually result in a textbook. Fate had in store that he completed this work alone. Adam Bowers decided that this tribute to Nigel should be co-authored by the master himself. All functional analysts should be grateful to Adam for his kind en- deavour, and for the splendid textbook he provides. Indeed this book is a smooth and well-balanced introduction to functional analysis, constantly motivated by applica- tions which make clear not only how but why the field developed. It will therefore be a perfect base for teaching a one-semester (or two) graduate course in functional analysis. A cascade falling from so high is a powerful force, and a beautiful sight. Please open this book, and enjoy. Paris, France Gilles Godefroy January 2014 vii Preface During the Spring Semester of 2010, Nigel Kalton taught what would be his final course. At the time, I was a postdoctoral fellow at the University of Missouri- Columbia and Nigel was my mentor. I sat in on the course, which was an introduction to functional analysis, because I simply enjoyed watching him lecture. No matter how well one knew a subject, Nigel Kalton could always show something new, and watching him present a subject he loved was a joy in itself. Over the course of the semester, I took notes diligently. It had occurred to me that someday, if I had the good fortune to teach a functional analysis course of my own, Nigel Kalton’s notes would make the best foundation. When I happened to mention to Nigel what I was doing, he suggested we turn the notes into a textbook. Sadly, Nigel was unexpectedly taken from us before the text was complete. Without him, this work—and indeed mathematics itself—suffers from a terrible loss. About this book This book, as the title suggests, is meant as an introduction to the topic of functional analysis. It is not meant to function as a reference book, but rather as a first glimpse at a vast and ever-deepening subject. The material is meant to be covered from beginning to end, and should fit comfortably into a one-semester course. The text is essentially self-contained, and all of the relevant theory is provided, usually as needed. In the cases when a complete treatment would be more of a distraction than a help, the necessary information has been moved to an appendix. The book is designed so that a graduate student with a minimal amount of advanced mathematics can follow the course. While some experience with measure theory and complex analysis is expected, one need not be an expert, and all of the advanced theory used throughout the text can be found in an appendix. The current text seeks to give an introduction to functional analysis that will not overwhelm the beginner. As such, we begin with a discussion of normed spaces and define a Banach space. The additional structure in a Banach space simplifies many proofs, and allows us to work in a setting which is more intuitive than is necessary ix x Preface for the development of the theory. Consequently, we have sacrificed some generality for the sake of the reader’s comfort, and (hopefully) understanding. In Chap. 2, we meet the key examples of Banach spaces—examples which will appear again and again throughout the text. In Chap. 3, we introduce the celebrated Hahn–Banach Theorem and explore its many consequences. Banach spaces enjoy many interesting properties as a result of having a complete norm. In Chap. 4, we investigate some of the consequences of completeness, in- cluding the Baire Category Theorem, the Open Mapping Theorem, and the Closed Graph Theorem. In Chap. 4, we relax our requirements and consider a broader class of objects known as locally convex spaces. While these spaces will lack some of the advantages of Banach spaces, considerable and interesting things can and will be said about them. After a general discussion of topological preliminaries, we con- sider topics such as Haar measure, extreme points, and see how the Hahn–Banach Theorem appears in this context. The origins of functional analysis lie in attempts to solve differential equations using the ideas of linear algebra. We will glimpse these ideas in Chap. 6, where we first meet compact operators. We will continue our discussion of compact operators in Chap. 7, where we see an example of how techniques from functional analysis can be used to solve a system of differential equations, and we will encounter results ∞ 1 which allow us to do unexpected things, such as sum the series n=1 n4 . We conclude the course in Chap. 8, with a discussion of Banach algebras. We will meet the spectrum of an operator and see how it relates to the seemingly unrelated concept of maximal ideals of an algebra. As a final flourish, we will prove the Wiener Inversion Theorem, which provides a nontrivial result about Fourier series. At the end of each chapter, the reader will find a collection of exercises. Many of the exercises are directly related to topics in the chapter and are meant to complement the discussion in the textbook, but some introduce new concepts and ideas and are meant to expose the reader to a broader selection of topics. The exercises come in varying degrees of diffculty. Some are very straightforward, but some are quite challenging. It is hoped that the reader will find the material intriguing and seek to learn more. The inquisitive mind would do well with the classic text Functional Analysis by Walter Rudin [34], which covers the material of this text, and more. For further study, the reader might wish to peruse A Course in Operator Theory by John B. Conway [8] or (moving in another direction) Topics in Banach Space Theory by Albiac and Kalton [2]. About Nigel Kalton Nigel Kalton was born on 20 June 1946 in Bromley, England.
Recommended publications
  • Banach Spaces and Their Applications in Analysis Nigel J
    Banach Spaces and their Applications in Analysis Nigel J. Kalton Banach Spaces and their Applications in Analysis Proceedings of the International Conference at Miami University May 22Ϫ27, 2006 In Honor of Nigel Kalton’s 60th Birthday Editors Beata Randrianantoanina Narcisse Randrianantoanina ≥ Walter de Gruyter · Berlin · New York Editors Beata Randrianantoanina Narcisse Randrianantoanina Department of Mathematics and Statistics Department of Mathematics and Statistics Miami University Miami University Oxford, OH 45056, USA Oxford, OH 45056, USA E-mail: [email protected] E-mail: [email protected] Keywords: applications of Banach space theory, approximation theory, functional calculus, algebraic methods in Banach spaces, homological methods in Banach spaces, isomorphic theory, nonlinear theory Mathematics Subject Classification 2000: primary 46-06, 46N10, 46N20, 46N30, 46N40; secondary 46A22, 46B10, 46B20, 46E39, 47H09 Țȍ Printed on acid-free paper which falls within the guidelines of the ANSI to ensure permanence and durability. Library of Congress Cataloging-in-Publication Data A CIP catalogue record for this book is available from the Library of Congress. ISBN 978-3-11-019449-4 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. ” Copyright 2007 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin, Germany. All rights reserved, including those of translation into foreign languages. No part of this book may be repro- duced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • On the Stochastic Richards Equation
    Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften am Fachbereich Mathematik und Informatik der Freien Universit¨at Berlin On the Stochastic Richards Equation vorgelegt von Ralf Forster Berlin 2011 Betreuer: Prof. Dr. Ralf Kornhuber, Berlin Gutachter: Prof. Dr. Ralf Kornhuber, Berlin Prof. Dr. Omar Knio, Baltimore Tag der Disputation: 8. M¨arz 2011 Contents Introduction 1 1 Deterministic Richards equation in homogeneous soil 7 1.1 Basic tools in hydrology and Kirchhoff transformation . ...... 7 1.2 Boundary conditions and weak formulation . .. 12 2 The stochastic Richards equation 16 2.1 Randomfields............................... 16 2.2 Tensorspaces............................... 18 2.3 Weakformulation............................. 22 3 Discretization 29 3.1 TheKarhunen–Lo`eveexpansion. 29 3.1.1 Definition ............................. 30 3.1.2 Independent KL expansions and reformulation . 36 3.1.3 Computationalaspects. 42 3.2 Time discretization and convex minimization . .... 44 3.2.1 Timediscretization. 44 3.2.2 Formulation as a convex minimization problem . 46 3.2.3 Variationalinclusions . 51 3.3 Polynomial chaos and finite elements . 57 3.3.1 (Generalized)Polynomialchaos . 58 3.3.2 Finiteelementsinspace . 63 3.3.3 Approximation of the nonlinear functional . .. 65 3.3.4 Aconvergenceresultforthelimitcases . 71 3.4 Numericalexperiments. 78 3.4.1 Resultsforonespacedimension. 79 3.4.2 Resultsfortwospacedimensions . 81 4 Numerical solution 85 4.1 CommonmethodsforSPDEs . 85 4.1.1 StochasticGalerkinmethod . 86 4.1.2 Stochasticcollocation . 90 4.1.3 MonteCarlomethod. 92 4.2 Nonlinear Block Gauß–Seidel and minimization . .... 95 4.2.1 NonlinearBlockGauß–Seidel . 95 4.2.2 TransformationofthetensorproductPC . 99 4.2.3 Blockminimization. 106 4.3 Monotonemultigridmethod. 107 4.3.1 Multilevelcorrections .
    [Show full text]
  • Family Reunion Unites 250 Descendants
    wCCOND rROlM ! COLUMBIA MISSOURIAN. Sunday. June 24. 1984 Page 10A jaaSfc to-j- JJJtflf. 4c tf nf JC jteBtfSfMaBS&9HaBBHaK& EmhSs Fulton's St. Mary Aldermanbury Church, rebuilt from bombed ruins in England, is the site for the Robinett family reunion. The Robinetts' last European ancestors were married in the church in 1653. Bernice Robinett of Payson. Ariz., right, rem- inisces about her family's last reunion two years ago. Gregg Goldman Four-da-y family reunion unites 250 descendants By Sarah Clayton Peace" (Iron Curtain) speech at West- ing that comes from a 300-ye-ar history in the to Fulton he took a 50-ho-ur bus ride. Monta L. Osborne, an amateur genealogist Missourian staff writer minster College in Fulton. In the early 1960s, United States. The move to gather the family together in and Robinett descendant, also has looked the remains of the London church were re- Until two years ago, his knowledge of his Fulton began with James Onan. into his family line. He has determined that In 1653 Allen Robinett and Margaret Simm constructed at Westminster. The Sir Christo- family's background only extended as far as Onan spent years compiling a genealogical there are approximately 30,000 living Robi- were married in a small church, St. Mary A- pher WreiKiesigned church now houses a his grandfather. Today his knowledge ex- history of the Robinett family. But a few nett descendants in his line alone. He has 10,-00- 0 ldermanbury, in London. memorial museum for Churchill. tends 12 generations. years ago he became too ill to complete his of those30,000 names recorded.
    [Show full text]
  • A Abstract Factorization Approach, 887–889 Abstract Interpolation
    Index A Bergman-Hodge type decomposition, Abstract factorization approach, 887–889 1386–1387 Abstract interpolation problem, 693 Bergman kernel, 73–85 Abstract operator adjoints, 905 Bergman projection, 74 Accretive L-system, 799 Bergman space, 39–40, 1116 Accumulative system, 801 Besov-Sobolev space, 1137–1138 Adele ring, 1288–1291 Bessel functions, 568–569, 1660 Adele von Neumann algebra, 1308–1310 Beurling type theorems, 1160–1161 Adele W-probability space, 1328–1333 Beurling–Lax–Halmos theorem, 998 Admissible kernel, 135 Beurling–Malliavin majorant, 583 Algebraic analysis, 1555, 1603 Beurling–Malliavin multiplier theorem, Algebraic isomorphism, 1168–1169 582–591 Algebraic Riccati equations, 441–445, Beurling’s representations, 1059–1061 463–467 Bezout equation, 460–461, 891 Ambiguity transformation, 847, 859–861 Biholomorphic mappings, 80–83 Ando dilation, 1106–1108 Birth-and-death processes, 519 Andô’s theorem, 225, 982 Blaschke condition, 494–495 Antisymmetric Fock space, 1142 Blecher-Effros-Ruan axioms, 226 Arithmetic algebra, 1251, 1297–1298 Block-column operator matrix, 662 Arithmetic-function(s), 1246–1282 Block-tridiagonal system, 921–923 tensor(ing), 1264–1269 BL.V /, 1814 tensor product algebra, 1265 Bochner-Martinelli formula, 1826 Arithmetic p-prime probability space, Bognár-Krámli factorization, 230–232 1262 Borichev’s construction, 585–588 Arveson space, 1778, 1781 Boundary triplets, 183–215 Associated pairs, 733–734 Boundary value(s), 1222 Asymptotic behavior, 345–368 Boundary value problems, 1370–1390 Atomization procedure, 601–603 Bounded real lemma, 455–456 Azukawa pseudometric function, 78 Brangesian complementary space, 647 Brehmer conditions, 1105 BR.V /, 1814 B B.V /, 1814 Backward multishift, 1098 Backward shift, 1095 Banach algebra, 887 C Banach space, 875–879, 1183 Canonical coherent states (CCS), 116–117 Bandlimited functions, 835, 838–842 Canonical (co-prime) external forms, 910 Beals’ approach, 401–402 Canonical factorizations, 928 Berezin transform, 121, 1017 Canonical forms, 433–435, 907–908 © Springer Basel 2015 1853 D.
    [Show full text]
  • Book of Abstracts
    PANTONE 179C Proceedings of the VOLUME V Mathematicians International Congress of Proceedings of the International Congress of Mathematicians Rio de Janeiro 2018 Book of Abstracts Alexander Arbieto Editor C C M M Y Y CM CM MY MY CY CY CMY CMY K K ISBN 978-981-3272-93-4 9 789813 272934 a SBM On conciseness of words in residually finite groups, Pavel Shumyatsky Univer- sity of Brasilia [email protected] A group-word w is called concise if whenever the set of w-values in a group G is finite it always follows that the verbal subgroup w(G) is finite. More generally, a word w is said to be concise in a class of groups X if whenever the set of w-values is finite for a group G X, it always follows that w(G) is finite. P. Hall asked whether every word is concise.2 Due to Ivanov the answer to this problem is known to be negative. On the other hand, for residually finite groups the problem remains wide open. We recently discovered that the Lie-theoretic techniques created by Zelmanov in his solution of the restricted Burnside problem can be used to prove conciseness in residually finite groups of many words. Our talk will be about recent developments with respect to that problem. Using MIR-max algorithm to monitor performance of donor-funded projects in developing countries based on DHS data, Elias Mwakilama and Martin Pais- ley Staffordshire University, UK and University of Malawi, Malawi emwakilama@ cc.ac.mw Most developing countries in Africa are faced with problems of ill-health, poverty, human rights violation, and non-access to human growth services such as clean water.
    [Show full text]
  • Signature Redacted 7
    ON INTEGRAL EQUATIONS Their Solution by Iteration and Analytic Continuation by ALAN J. PERLIS B. S., Carnegie Institute of Technology (1942) S. M., Massachusetts Institute of Technology (1949) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREIENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1950) Signature Redacted Signature of Author................W........................... Department of Mathematics, May 12, 1950 Signature Redacted Certified Thesis Supervisor Signature Redacted * *9*00 @ 00*0* - 0i0*0 **00 * e*0 Oe e 0. 0 0C 0e* O OC C e OC C 0C 0e C O C * *CCS Chairman, Departmental Committee on Graduate Students 7/ Table of Contents; Page Acknowledgment............. ...... ................. Introduction. ........................................ 1 I. Iterative proceeaures....................... 12 II. Remarks on the Resolvent as an Analytic function..36 52 III. Solution by Analytic Ontinuation................. -___ Acknowledgment The author wishes to express his sincere gratitude and appreciation to Professor Philip Franklin for his encouragement, assistance, and guidance in the preparation and development of this thesis. ii Abstract This thesis is concerned with the linear integral equation with fixed finite limits, known as the Fredholm equation of the second kind. The kernel is not assumed to be symmetric; but, as with all other functions involved, is assumed continuous in the unit square 0h X3 I A 1. Other than the Fredholm procedure involving infinite determinants, solutions for large ) have not been exhibited, at least in forms not demanding prior explicit knowledge of the characteristic values and characteristic functions. From the standpoint of computing, it is desirable to obtain solutions requiring only evaluation of the kernels and iterated kernels of the equation.
    [Show full text]
  • Approximation Properties and Eigenvalue Problems for Banach Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Pakistan Research Repository Approximation properties and eigenvalue problems for Banach spaces Qaisar Latif February 12, 2015 Approximation properties and eigenvalue problems for Banach spaces Name: Qaisar Latif Year of Admission: 2009 Registration No.: 105{GCU{PHD{SMS{09 Abdus Salam School of Mathematical Sciences GC University, Lahore, Pakistan. Approximation properties and eigenvalue problems for Banach spaces Submitted to Abdus Salam School of Mathematical Sciences GC University Lahore, Pakistan in the partial fulfillment of the requirements for the award of degree of Doctor of Philosophy in Mathematics By Name: Qaisar Latif Year of Admission: 2009 Registration No.: 105{GCU{PHD{SMS{09 Abdus Salam School of Mathematical Sciences GC University, Lahore, Pakistan. DECLARATION I, Mr. Qaisar Latif Registration No. 105{GCU{PHD{SMS{09 student at Abdus Salam School of Mathematical Sciences GC University in the subject of Mathe- matics, hereby declare that the matter printed in this thesis, titled \Approximation properties and eigenvalue problems for Banach spaces" is my own work and that 1. No direct major work had already been done by me or anybody else on this topic; I worked on, for the PhD degree. 2. The work, I am submitting for the Ph. D. degree has not already been submitted elsewhere and shall not in future be submitted by me for obtaining similar degree from any other institution. Dated: |||||||||-, Signature of Deponent: |||||||||||| RESEARCH COMPLETION CERTIFICATE It is certified that the research work contained in this thesis, titled \Approximation properties and eigenvalue problems for Banach spaces" has been carried out and completed by Mr.
    [Show full text]
  • Stochastic Analysis of Gaussian Processes Via Fredholm
    STOCHASTIC ANALYSIS OF GAUSSIAN PROCESSES VIA FREDHOLM REPRESENTATION TOMMI SOTTINEN AND LAURI VIITASAARI Abstract. We show that every separable Gaussian process with inte- grable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations and maximum likelihood estimations. 1. Introduction The stochastic analysis of Gaussian processes that are not semimartin- gales is challenging. One way to overcome the challenge is to represent the Gaussian process under consideration, X say, in terms of a Brownian motion and then develop a transfer principle so that that the stochastic analysis can be done in the “Brownian level” and then transfered back into the level of X. One of the most studied representation in terms of a Brownian motion is the so-called Volterra representation. A Gaussian Volterra process is a process that can be represented as t (1.1) Xt = K(t,s)dWs, t ∈ [0, T ], Z0 where W is a Brownian motion and K ∈ L2([0, T ]2). Here the integration goes only upto t, hence the name “Volterra”. This Volterra nature is very convenient: it means that the filtration of X is included in the filtration of the underlying Brownian motion W . Gaussian Volterra processes and their stochastic analysis has been studied, e.g., in [2] and [11], just to mention arXiv:1410.2230v5 [math.PR] 22 Mar 2016 few. Apparently, the most famous Gaussian process admitting Volterra representation is the fractional Brownian motion and its stochastic analysis indeed has been developed mostly by using its Volterra representation, see e.g.
    [Show full text]
  • Operator Theory a Comprehensive Course in Analysis, Part 4
    Operator Theory A Comprehensive Course in Analysis, Part 4 Barry Simon Operator Theory A Comprehensive Course in Analysis, Part 4 http://dx.doi.org/10.1090/simon/004 Operator Theory A Comprehensive Course in Analysis, Part 4 Barry Simon Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 47-01, 34-01, 46-01; Secondary 81Q10, 34L05, 35P05, 42C05, 46H05, 22B05. For additional information and updates on this book, visit www.ams.org/bookpages/simon Library of Congress Cataloging-in-Publication Data Simon, Barry, 1946– Operator theory / Barry Simon. pages cm. — (A comprehensive course in analysis ; part 4) Includes bibliographical references and indexes. ISBN 978-1-4704-1103-9 (alk. paper) 1. Mathematical analysis—Textbooks. 2. Operator theory. I. Title. QA300.S5285 2015 515.724—dc23 2015033104 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s).
    [Show full text]
  • 12.2% 116,000 120M Top 1% 154 4,000
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Introductory Chapter: Frontier Research on Integral Equations and Recent Results Francisco Bulnes “Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country” - David Hilbert 1. General discussion The themes of recent research are focused on nonlinear integral equations [1], the new numerical and adaptive methods of resolution of integral equations [2], the generalization of Fredholm integral equations [3] of second kind, integral equations in time scales and the spectral densities [3, 4], operator theories for nonsymmetric and symmetric kernels [1, 5], extension problems to Banach algebras to kernels of integral equations [5–7], singular integral equations [10], special treatments to solve Fredholm integral equations of first and second kinds, nondegenerate kernels [3, 6] and symbols of integral equations [7], topological methods for the resolution of integral equations and representation problems of operators of integral equations. Now, well, the field of the integral equations is not finished yet, not much less with the integral equations for which the Fredholm theorem is worth [fredholm], nor with the completely continuous operators, since there exist other integral equations devel- oped of the Hilbert theory respect to the Fredholm discussion, and studies on singular integral equations, also by Hilbert, Wiener and others [8].
    [Show full text]
  • Linear Integral Equations Theory and Technique
    Linear Integral Equations Theory and Technique RAM P. KANWAL Pennsylvania State University University Park, Pennsylvania ACADEMIC PRESS 1971 New York and London COPYRIGHT © 1971, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS, INC. Ill Fifth Avenue, New York, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. Berkeley Square House, London W1X 6BA LIBRARY OF CONGRESS CATALOG CARD NUMBER: 77-156268 AMS (MOS) 1970 Subject Classification: 45A05, 45B05, 45C05, 45D05, 45E05, 45E10, 45E99, 45F05, 35C15, 44A25, 44A35, 47G05 PRINTED IN THE UNITED STATES OF AMERICA IN LOVING MEMORY OF MY GRANDMOTHER PREFACE Many physical problems which are usually solved by differential equation methods can be solved more effectively by integral equation methods. Indeed, the latter have been appearing in current literature with increasing frequency and have provided solutions to problems heretofore not solvable by standard methods of differential equations. Such problems abound in many applied fields, and the types of solutions explored here will be useful particularly in applied mathematics, theoretical mechanics, and mathematical physics. Each section of the book contains a selection of examples based on the technique of that section, thus making it possible to use the book as the text for a beginning graduate course. The latter part of the book will be equally useful to research workers who encounter boundary value problems. The level of mathematical knowledge required of the reader is no more than that taught in undergraduate applied mathematics courses.
    [Show full text]
  • Approximation Properties of Locally Convex Spaces and the Problem Of
    Approximation Properties of Locally Convex Spaces and the Problem of Uniqueness of the Trace of a Linear Operator ∗ G. L. Litvinov Selecta Mathematica Sovietica 0272-9903/92/010025-16 $1.50 + 0.20/0 Vol. 11, No. 1 (1992), p. 25-40. ©1992 Birkh¨auser Verlag, Basel 1. Introduction Linear positive operators in Hilbert spaces that have a trace were described for the first time in studies by von Neumann devoted to the mathematical apparatus of quantum mechanics. Subsequently, Schatten and von Neumann [13] described all the linear continuous operators that have a trace in Hilbert spaces. An operator that possesses a trace was shown to correspond in one- to-one fashion with a bivalent tensor, and it was proved that the trace of an operator could be defined as the result of a total contraction of the corresponding tensor. This construction was generalized by Ruston to the case of Banach spaces and, independently of Ruston, Grothendieck [4] genera- lized the construction to the case of arbitrary locally convex spaces. It was ′ arXiv:1108.1721v1 [math.FA] 8 Aug 2011 shown that given an inductive topological tensor product E ⊗¯E of some space E and the space E′ dual to it, a linear operator in E could be associated with every element of this product. However, the “operators with trace” obtained in this way are not, generally speaking, continuous; a narrower class is formed by the Fredholm operators in the sense of [4], which are always weakly continuous. Finally, an even narrower class is formed by the nuclear operators (which are continuous).
    [Show full text]