<<

p. VOPD> ph .r3 o· l~ 2, MA!1~ ~IS·l.f L £tC 3'6 o_~.~----~ 0- 0. __• ______

Lecture Notes in Physics

Edited by J. Ehlers, Munchen, K. Hepp, Zurich R. Kippenhahn, Munchen, H. A. Weidenmuller, Heidelberg and J. Zittartz, Koln Managing Editor: W. Beiglbock, Heidelberg

123-

i. ,$ dB ;gIS! !!\lP' d! -tp '* +9 A?++& ei Dieter H."Mayer"

,The Ruelle-Araki in Classical Statistical Mechani(

311 + F -6-9 q..- , ...... -%"...cl· d }1M 'ws:* •• •• •

APPENDIX A.

GROTHENDI.ECK'S THEORY OF NUCLEAR OPERATORS IN BANACH SPACES

In this appendix we recall the fundamentals of Grothendieck's the-

ory about nuclear operators in Banach spaces as far as they are neces-

sary for the considerations in this work. A much more extensive pre­ sentation of this theory can be found in ~ 1] and fi 28] •

A.l. The projective topological of Banach spaces

Let E, F be two complex Banach spaces with norms II liE and II I~. Let E ® F be the tensor product of these. two spaces with the II II'll

defined by

= inf z:::=.1Ie)..11 E II f .11 F' (A1) IIx "71" {i} ).

;!. where the infimum has to be taken over all possible finite representa- ,- !~ tions of x € E ® F in the form I, ~ ,i

:1 x =Le. ®f. , (A2) {i}). ). ,- ij with e. E and f. e F• ). e ). The completion of the space E.® F under this norm is denoted by

~ E~ ., F and is called the projective topological tensor product of the \ -71" ~ two spaces E and F. The norm defined in (Al) and introduced first by i A f: R. Schatten [129] is called the 'If-norm. The elements of the space E @'!T F j;; Iji'i are the Fredholm kernels. i! II "fJ A.2. The tensor product of two linear mappings ii [1 The following important Theorem was proved by Grothendieck E30J: l'

Theorem A. 1 Let- E,' F, G be three Banacli spaces and let T" ExF~G· ~ ~ dl ====--"=~=---~=--=------_ r

i.' -

.be a bilinear continuous mapping of the.direct product E x F into G.

Then there exists a~ uniquely determined linear continuous mapping A T:'" E 0'1r F ---7 G with T'" u = T (e,f) ifu=e@f. Furthermore one

:he- has 11TH = IITII

:es- Consider then two pairs (E , F ) and (E , F ) of Banach spaces and 1 1 2 2 'e- two linear continuous mappings T. Ei~Fi Define a map- ~ ' i = " 2. " as follows: ping T 1 X T2 : E, x E2----7 F, ®17'F2

= (A3)

According to Theorem A.l there exists an uniquely determined linear

mapping

A 1 ) (M)

ta- which is called the tensor product of the two linear mappings T, and

1\2 ) A.3. Nuclear operators in Banach spaces

Let E, F be'complex Banach spaces. Let E* be the dual

of E that means the space of all bounded linear functionals f on E with

= sup If (e)I < 00 • (A5) eeE IIell"'"

.x. 1\ *1'\ Consider then the space E ®'Jr F Every element L E. E ®'/rF defines in a canonical way a bounded linear operator ~: E-7F. In fact, every L has a representation of the form

L=LX with Lil/ < 00 (A6 ) {i} ~ {if ~ ., :

where e* € E* , f. € F all have norm one. Therefore.;t can be defined ~ ~ as

Le = LA.. e"*(el f. for e e. E. (A7) {i} ~ ~ ~

The correspondence L ~:t:- defines a mapping :f: E* ®'11'" F -7 B (E, F)

where B(E, F} denotes the space of all linear bounded mappings of E

into F. Unfortunately however it is not known if this mapping is one-

to-one. Definition A.' Let E, F be Banach, spaces. Let L' (E, F) : = Y(E*®r,rFlC B(E,.F}. The elements of L (E, F) are called nuclear operators or some- I· ~ I times also Fredholm operators. The norm induced by in the space I 1 L' (E, F) is the trace norm or.the nuclear norm. i

The space L' (E,F) is in general a quotient space of the space E*cib F. ~

A.4. The trace functional

Let E be a Banach space and E* its . Let LEE*-"® E have 'll: the representation

e~® (A8) I' L = L 1. e l {i~ ~ ~ i

e~ ~1. . with {.:tJ E 1" E E*, e i E E, lIe711 L', "eill I: Then consider the expression \i ,1 II H tr.ace L. = LA. ei*.(e ) (A9) {is ~ i .,jl ,.:,.1 This is well defined and in fact a linear continuous functional on the

space E* ®~E.A Since it is not knO\-In in general if the mapping ~ in (A7l is one-to­ II

one it is not possible·· t!o;' say·· trhat· a'· nuclearoperatnr 'has' a ·tr=e. Re-' il1: • lB.. _ .--- -' .- , .

-- .== = ~ --~i':yi¥)?-:- 129 ed member "that- this ',is' d±fferent in the case of a where a

has always a trace. To get operators in a general Banach space Grothendieck introduced another class of nuclear

7) operators which he called p-summable operators.

Let 0 < p ~ 1 and let E, F be two Banach spaces. A

L E E* ®-;r p' is called p-'summable if L has the follo>ling representation

le- L =-L;t, e f (A10) *i ® i til J.

>lith e~ E E* , f, E- F, Ile.... 1I "'" 1 , IIf ,II '"1 and rA, 'I ~'-l which means F)C J. J. J. ]. lJ.5 p P Lll./ < 00. :ome- {q 1:

A linear nuclear operator:l: E~ F is called p-summable if there ex-

ists a p-summable Fredkolm kernel LE. E*'"®'l(F such that ':fILl = "'"..p

Denote the space of these p-summable operators by L {p} (E, F). Grothen­ F. dieck showed in 03~ that this space is a complete metrizable topolo­

gical space if one introduces on it the metric which is induced by the

metric S originally defined on the space of p-summable Fredholm ker­ p ve nels:

S (L) = inf L IIt .1 p (A11 ) P i . 1

where the infimum is taken over all representations of L in the form

(A10) •

A.S. The order of a nuclear operator and its

A Let L E. E ~F be a Fredholm kernel. Consider the lO>ler bound q of

all real numbers p, 0 < p ~ 1 , such that L is p-summable. The number q e is called the order of the Fredholm kernel. The set of all Fredholm [q] kernels of order ~ q is denoted by E ® F. 0- In analogy an operator;t: E ~ F is called nuclear of order q if there e- +< .- 130 ~ Ij exists a Fredholm kernel L of order q .,ith ~ = !f(L). The set of all :..., < nuclear operators of order ~ q ",ill be denoted by L [q1 (E, F). For nuc- I lear operators of order zero in particular one has the following cha- racterisation: r A nuclear operator.t: E~F is of order zero if, and only if it has a representation as given in (A10) where the sequence{~il belongs to the space lp for all p >o. I:., Other properties of nuclear operators are the following ones: :i

Let t:: E -:> F be nuclear of order q and let T1: F ~ G respectively i· T : G~ E be linear bounded mappings. Then the mapping T Q,t.\) T : G~ G i· Z 1 Z , is also nuclear of order q. I Furthermore the tensor product of t.,o nuclear operators of order q in I. the projective topological tensor product of the corresponding spaces i i' is again nuclear of order q. Finally, Grothendieck.proved the following interesting Theorem~~: , ., j1 l. Theorem A. Z Let La L [I3 (E, E) with 0 ~ P ~ Z13. Then the Fredholm de- I' I! Ii terminant det(1 z ,t.). is an· ent-ire· function of -order ~ r, ",here 1/r = II!I 1/p - 1/Z, and of genus O. The operatorJe is of trace class and one has , I det(l - z~) = lr[(1 - z 1.) fi} ~ respectively i d trace ;f. = LX, I' h\ ~ . I' wherefAi~ are the non-vanishing eigenvalues of ~ counted according to ~ their algebraic multiplicities. For these eigenvalues one has further- more ~ ~ I' ~I:tl p < 0iC> • i {ij 1: ru M !~ F, S I-1 . 1. . .

.-c'"-. ::;:;;;.,

APPEi,m IX B.

lUC- COMPOSITION OPERATORS ON BANACH SPACES OF HOLOMORPHIC FUNCTIONS

~e are going to prove in this Appendix a version of a theorem

about composition operators on the Banach space of holomorphic func-

tions over open domains in the space 1, which is stronger than the one ~ ~. we gave in 1 By. restricting the discussion to the Banach space 1 1 we can weaken quite a lot the technical ass~ptionswe had to make there ly for a general Banach space. This is related to the existence of a mo­ ~G notonic i~ the space 1 [13~ • 1

:1 Theorem B.l Let D be an open bounded region in 1, and zo a point in

'; D. Let'l'o: 1 1 --7> 1 1 be a nuclear mapping of order zero with II 'If'oll< 1 such that the mapping 'If: 1,--71, defined as ~(z) = zo +lfo(z) maps D strictly inside itself, that means1'(D) C D. LetV~AocJD) be a hoC.

~- lornorphic function on D which is continuous on D. Define the composi-

= tion operator T Aoe(D) -l> A...J.D) by

(z) ~ T f = tt'(z) f 0'f{z) Then we have: 1) 1r has exactly one fixed point z* in D. 2) T is nuclear of order zero. -1 .... 3) trace T det{ , ) !{(z). = -'VIo

:0 inDl~ ~r- Proof: The proof of this theorem is similar to the one given

in the more general case. We will use here the fact that 1, has a mo­

notone Schauder basis for which we take the following vectors e., i~ W: ~

(e ) i k = dik for all ke w • (B1)

Then any z e I, can be written as i-,,;

l;jL

Z = (B2 ) L: Zi e i i=l-

00 and Vie have IIzl1 = ~ Iz.\ i=l ~ Assertion 1) of the above theorem is a special case of the Earle-Hamil-

ton fixed point Theorem [133J for holomorphic mappings in an arbitrary

complex Banach space.

I We next prove assertion 2). For this Vie remark that there exists a I! 1 1 ball K:; (z*) of radius t around the fixed point z* such that 1p{K/,(Z"'»)

I'f, C Kcf(z*) • This follmls immediately from the assumption l'Y'o~

~ 15J I I· !: 00 r g(z) = 11k! Dkg{Z") (z - z..)k. (B4 ) r = I· k=O i" I: Because y{z") = z* and )i'(D) C D one gets using relation (B3)

00 ~ k .. goy (z) = ~ 11k! D g(z ) (yo{z - z*»k • (B5) k=O

Since is nuclear of order zero it has the representation 'ro ,1 Ii (B6) yo=LA . e* @e.1 i ~ i

~ /I~l, 'lith e: 17, lie: and {eik the Schauder basis of 11 as defined in (Bl). The sequence{:lJ belongs to the space lp for any p> 0, that i U means I ~ ,--li_. ~ ~.

' ".~_,","..;'••:.i- ...... , ,_. ~.~ • .... ".\.~:-~

133

P £::"IA.I < 00. i=l ~

Inserting representation (B6) into relation (B5) and taking into account s~~etry .1- the linearity and properties of the operators Dkg(z*) we get

.y 00 0( .... 0( k 1/0< ! /t- !: (z-z )- D g(z ) (!: -), (B7) k=O 0( ,1~I=k -

"'here we used the follo",ing notations:

0< is a rnultiindex <:(= (0<.). II.' with o(.€ fi-lU[O] for all i and = - 11.E'I 1. 10<1:- 00 L: 0( • <00. i=l ~ '"1 oii .. ,,0< A~: = /\ . r e (z-z ) = e* (z-z*) 0( i and (B8) n ~ n i iE IN ie. n-l 0< 0< . 0( .~~ 11~1 e- ) -e: = (e" ... e" .. ,ei,··,ei ,·· 1

~ This allows us to write the operator T f (z) = f o¥'(z) as

= ~ T '" (B9 ) = L > A "'*e k 0< ® e k,~ k=O O(,I~I =k k,~ '-

with

A.c(iC ;!k 0< : = n l '- i£. IN

~*. 0< ek 0( (g) : = 1/c

= (z-z*)~ A~(l- '\ 0< (z) eX UfO Aoo(D). '-

The number E is chosen in such a way that

"""" 1-E..... JI/ r II ~li ei(z-z) ei~ ~ < 6 for all z ~ D (B 11 ) ~

rr>h.; .; .:1.-.1,.. \-,""' ..... l •

1';;-,

1/ L".:l. e"'(z-z*) e." ~ ef' < J for all z € D {il ~ ~ ~

Relation (B11) is obviously equivalent to

~I~.P-£ le~(z-z*)1 "" t". (B12) ~ ~ ~

Next we prove a lemma. I !; r.- ~ o(~.' ~.s ! Lemma B.1 Let 0< be a multiindex with I I = k and let 1';:: i I I ~ i be the non-vanishing entries of ~. Then there exist numbers t.>O, ~ ! s b 1 ~ i ~ s, with ~ t. < J such that i=1 ~ r olD. I' I. ~ek,~II L s >l 1) II - {:;; t i I~ s -eX I 2) IjE~~,£! f n t. fi II i=1 ~ "

Proof: Denote by K1qCRS the following compact set ,. !

s ~ lr X xi~'O i .and x. 1 Kc!'¥= { = (x1 , .• ,xs)C IRs V L ~ f i=1 J' 1 1

Let "l: K{II-7 IR be the continuous function I I, I

s o(~i i(X) = IT xi (B13) II i=1 Ii j

there exists ~ ~ Since ! is continuous a xo '" KJ''' with t (xo ) (x) for

(t , ..,t )· Because I 1-£ Ie'*p. * If",,;,q all x EO K C'" Let x = 1 s f--+- A..I (z-z) " 0 . ~=1 f~ >~ j for all zE D we get 11 s s 0(" .

But this proves just our assertion 1) of Lemma B.1. I -X< s k * f'I Let e (g) = 1/ oX" ! D g (z ) (e" ,. .,ec: , .. ,e , .. ,e p ). k ,ex n. 1 ) . p - J.= ~ \1 1 's >s

The right hand side of this expression is nothing else but ·

~

, ~ ..

.,~'""­ 135

d k *" s 1/(2"71'i)s g(z + L z. e ) f'\ oCr 1 () O(t; s i=l ~ \i Iz i =0 z C' l .... czs

We can therefore apply Cauchy's inequalities to the function '"'g in the

polycylinder p. = {Z€ its : jZi.l< t.i} Hhich because of the inequality 2) L:s t. ~ J " belongs completely to the domain of holomorphy of this' i=l ~ function. The function '"g is thereby defined as s IV : = g(z* + e ). g(zl""zs) zi s =i=l ~ i

Doing this He get

v(~ 'Jk "-- sup Ig(z) I /t l .. t>sat" 1/(21T'~.) s.""('1 .f"\zx\,s 9(i) / ... 1 I z=o z E: D s r;:l z l ... 0 s

But this completes the proof of assertion 2) of Lemma B.l.

Coming back to the proof of our Theor~n B.l we introduce the quan-

tities

s O(~. 1 (nt.~)- e 0< : = e Oi k ,- i=l ~ k '- (B15) s IXf. -* ~ ek,~ : = ( n t. ) e"* v( i=l ~ k '- ... In terms of them the operator T can then be written as

1" 00 T = L > A. k IX <01. ® ek,o< (B16) k=O c(--,liX/=k '- '- -

Hith 00 > IAk Jq < 00 for all q> 0 , ==k=O -'-0( Jo0 ij ~ ek,o<_ EAuC>(D) with Ii e 0(" 1 I k ,- i

But this shows that the operator T is a nuclear operator of order ze- roo Since the operator T on the other hand is the composition of this operator with a bounded linear multiplication operator also T is nuc- lear of order zero in the space A~(D) .

Assertion 3) of Theorem B.1 finally is proved exactly in the same way as the analogous trace formula in reference01~ so that we can omit the details here.

l; II I, j i i I H i I

~ ~

,

._-----..._------_.... ~ :~~.

APPENDIX C.

POSITIVE OPERATORS IN BANACH SPACES

_s In this Appendix we collect some important results of the theory of

positive operators in general Banach spaces relevant for our work here. A detailed discussion of this theory can be found in D10] and [134J . Let B be a real Banach space. A subset K C B is called a proper

cone if

(Kl) with xE:K also ~ x E K for all ~ ~ 0 I (C 1 ) (K2) if x E. K and -x e. K then x = O.

Let K be a proper cone. K is called reproducing if every z€B can

be written as z = x - Y I with x, Y E K I that means I if B = K - K 0

Every proper cone induces a partial order ~ in B: let x lYE B. '£hen

we say

x s y ¢=) y-xE-K. (C2)

A linear operator T: B---7 B is called a positive operator if T

leaves the cone K invariant: T Kc K•

Let u E- K , u rJ.. 0 0 o 0

Definition Col A positive operator T is called u -positive if there o exist for" every x € K , X F 0 a number pE IN and positive real numbers o(,(b > 0 such that

£, TPx s 0<. U f-> U o o

This class of positive operators has been extensively studied by Kras­

noselskii and he shol-led Q09J I [i 10] I [134J that these operators al­

low for a generalization of the Theorems of perron-Frobeniusr6-77]

respectively of Jentzsch [84J 0 , ,- I.>ti I! 1 Theorem C.) (Krasnoselskii) Let K be a reproducing cone in a real Ba- nach space B. Assume T : B ---7 B to be an uo-positive compact linear operator in B. Chose pE n~ and O<,~>o such that ~uo ~ TPu ~ o(.u 0 o' Then one has:

1) There exists an eigenvector xl unique up to scalar multiplication

in the cone K with T x, ~1 xl' The eigenvalue is strictly po­ = A1 sitive and can be estimated by I: (31/p ~ ~ ~ ~1 /p , - ~ . 2) The eigenvalue~, is simple and all other eigenvalues of T (consi­

dered as a complex linear operator in the complexified Banach space

B~ ) are in absolute value strictly smaller than A 1 I I It is obvious that this theorem reproduces for finite dimensional Ba- I; nach spaces just the results of Perron and Frobenius and for integral 1 operators on ('(M) where M is some compact manifold, the result of

Jentzsch. ii

How can one see if a positive operator is in fact u -positive? o An answer to this question i's given by [11 oJ

Lemma C., Let T be a positive operator and let u E K, u J, O. If o 0 T , there exist natural numbers q and p and real numbers !X,~ >0 such that I' -I TPx ~ P.> u respectively Tqx ~ :;( u ' , o o I then T is already uo-positive. 1

A simple application of this theory for certain composition operators 1 in complex Banach spaces of holomorphic functions can be found in 035] Here we recall only the most, important. result of this·-work. r: To formulate it we need some definitions. Let DC~n be an open boun­ j ded domain in ~n. Let A~(D) be the Banach space of all holomorphic i1 functions on D with the sup-norm. \Ve denote by H. (D) the set of all ~n ~ holomorphic mappings ~: D,~ D where D, is some small open neighbour­ hood of D., I.t ,is then knm-/n, that 'If! has- exactly' one fixed' 'point ·z* 'in' ~ ,~a __Il~ "

~-:::5~

a- D [133J. Define a set Dm(z* ) as ar n D (z*) (C 3) IR D n {z* + IR 1

n Consider then mappings '1)JE H, (D) Clith I ~n po-

''f (DIR(Z*) C DIR(Z*) (C4 )

i- This is just a certain reality condition on the mapping 'If. The set

lce of all mappings '\VIS H (D)' Hhich fulfil (C4) we denote by rf. (D)" I in In Let 1b k € rf. (D), , ~ k ,. m, such that there exists a k ,, ~ k ~ m, T In 0 0 with zk"* £ DIR(zk-3f- ) for a£l k. o ,- Let 0< = (e>:.). n.' be a multiindex withol € wu[o} andlo

~1"" ~m C!11 :Xml ;;(12 ,xm2 .xl i C

. 0(1'··'0{. __ IR Obviously the mapping,¥,- -m is again in 11. (D). ~n

Let f€A",,(D) and let be a domain with6cD. Let G , .. ,G be 6, 1 r f the (2n-2) -dimensional analytic null sets of f in 6. [137]. at Definition C. 2 The mappings .y" .. , Y'm E J;.ri (D) are called separating,

if

1) there exists a k , 1 6 k 6 m Hith Z~ C DIR(Z~ ) for all 1 6 k ~ m, o 0 o 2) for all regions 6. with~CD there exists a number No<~such that for 5 all N'7 No and all z"tln D for Hhich there exists a multiindex ;1'''' rX ) vlith 10< 1= Nand 1JJ- (z) E . G, n D there -- -rn - , 1. l. IR exists another multiindex @? = (f'1"" 0'm) Hithl~l= Nand 13" .. ,1?,m (z) "'f G n D for any , ~ i ~ r . 1'- i IR

Condition 2) in the above definition just says that the set of points lur- 0(, ,.. ,oil f - m (z) ~ is so dense in D for every Z that there does not exist f IR -/ -.

140 "

any function fGnoo(D) whose null sets contain all these points without

being identically zero.

After this bulk of definitions we can finally formulate the main

result of our investigations in ['35J :

Theorem C.2 Let DC ~n be an open bounded simply connected domain.

Assume the mappings 'If" . ., tm E ~~n (D) separating. Let 'fke A.,.,(D,) for , ;;; k ,; m, where D, is some open neighbourhood of D, with '(kiD> o. I: Ie,- m [R I- Define a mapping T: A~(D)~ A~(D) as Tf(z) = ~ ~k(Z) fo1k(z). k=' Then there exists an eigenvalue 1, of the operator T ~Iith 2, >0 and :I., >IAI for all other eigenvalues ;{ '" A, of T. The corresponding ei- genfunction f, is strictly positive on D[R and one has furthermore

for;l, the estimates m m ma~ (z) d,{, ~ L Ifk miE. L!fk(z). z € D[R k=' ZG Om k=' I !

\ I .j '1 i

~, b ;dr"

------_.-. 1 ~ I . '.

------_.. __.. _------~---'r=;.-- =====""="'=""'==-===--~-==_ -;;;;-~:::::: out Bibliography

[1] E.Lieb, D.Mattis: l1athematical Physics in One Dimension.

Academic Press, New York (1966).

[2J C.Thompson: One Dimensional r-lodels-Short Range Forces. In "Phase or Transitions and Critical Phenomena", vol.1, eds. C.Domb,

I1.Green, Academic Press, London (1972).

"Mathematical Statistical l1echanics". The Macmillan Com-

pany-, -Ne.,-York (1972). i- [3] Z. Salsburg, R. Z,·,anz ig, J. Kirkwood: Holecular Distribution Func­

tions in a One Dimensional Fluid. J. Chern. Phys. ~,

1098-1107 (1953).

L.Kadanoff: Scaling Laws for Ising Models Near T ~, c' Physics 263-272 (1966).

[5J K.Wilson, I.Kogut: The Renormalization Group. Phys. Rep. 12C,

75-200 (1974).

[6] P.Bleher, Y.Sinai: Investigations of the Critical Point in Models

of the Type of Dysons Hierarchical Model. Commun. l1ath.

Phys. 22, 23-42 (1973).

[7] P.Collet, J.Eckmann: A Renormalization Group Analysis of the

Hierarchical l10del in Statistical l1echanics. Lect. Notes

in Physics, no. Zi, Springer Verlag, Berlin (1978). [s] J .Glimm, A.Jaffe: Quantum Field Theory r-lodels, in "Statistical

l1echanics and Quantum Field Theory", eds. C.de Witt,

R.Stora, Gordon and Breach, New York (1971).

~] J.Glimm, A.Jaffe: A Tutorial Course in Constructive Field Theory,

in "Ne., Developments in Quantum Field Theory and Statisti­

cal r-lechanics" , eds. i'l.Levy, P.!1itter, Plenum Press,

New York (1977).

~O] Y.Sinai: l1arkov Partitions and C-Diffeomorphisms. Funct. Anal.

Appl. ~, no 1, 64-S9 (196S). .'. '.

142

[1 ~ Y. Sinai: Construction of Harkov Partitions. Funct. Anal. Appl. l,

no 2, 70-80 (1968).

[1~ Y.Sinai: Gibbs Measures in Ergodic Theory, Russ. Math. Surv. 166,

21-69 (1972).

[1 ~ R. Bowen: 1·larkov Partitions for Axiom A Diffeomorphisms. Am. J.

Hath. 92, 725-747 (1970). o~ R. Bowen: Marlwv· Partitions and Hinimal Sets for Axiom A Diffeo- morphisms. Am. J. Math. 2l, 907-918 (1970). 11, O~ R.Bowen: Periodic Points and Measures for Axiom A Diffeomorphisms. , , Trans. Am. Hath. Soc. 154, 377-397 (1971). j; ;I, [1~ R.BoVlen: Symbolic Dynamics for Hyperbolic Flows. Am. J. Hath. 22, 11 429-459 (1973). 11 [17] R.Bm/en: Some Systems Vlith Unique Equilibrium fitates. I·lath. Syst. Ii Theory!, no 3, 193-202 (1974). !, ,

~~ R.Bowen: Bernoulli Equilibrium States for Axiom A Diffeomorphisms. "; "I j, Hath. Syst. Theory!, 289-294 (1975). ,, 1 [19J R.BoVlen: EqUilibrium States and the Ergodic Theory of Anosov J ,; Diffeomorphisms. Lect. Notes in Math., vol. 470, Springer

" Verlag, Berlin (1975). Ii " ~~ ;j" R.BoVlen, D.Ruelle: The Ergodic Theory of Axiom A FloVls. Invent. " I·lath. l2., 181-202 (1975). 11 ~~ D.Ruelle: A Heasure Associated with Axiom A Attractors. Am. J. J

Ilath. 98, 619-654 (1976). ,.I ~2J D. Ruelle: "Thermodynamic Formalism". Addison-l'iesley, Reading,Mass.

(1978).

J. LeboVlitz: Ergodic Theory and Statistical ~.1.echanics.•.. In. o~'l'rans-

port Phenomena", eds. G. Kirczenm/, J .Harro, Lect. Notes

in Physics, vol. ~, Springer Verlag, Berlin (1974).

J.Moser: Dynamical Systems, Theory and Applications. Lect. Notes

in Physics, vol. ~, Springer Verlag, Berlin (1975).

S.Smale: Differentiable Dynamical Syo:;tems. •.. Bull... Am •. Math4 • Soc.•. ---'--'-- ~7'""'." ~_~ --'-"';"'__. _

143

22, 747-817 (1967).

E.Lorenz: Deterministic Nonperiodic Flow. J. ~tmos. Sci. 20,130-

141 (1963).

[27] D.Ruelle, F.'rakens: On the Hature of Turbulence. Commun. I-lath.

Phys. 20, 167-192 (1971), Commun. Math. Phys. ll, 343-344

(1971) •

~~- D.Ruelle: The Lorenz Attractor and the Problem of Turbulence.

Report at the Conference on "Quantum t-1odels and "lathema-

:us. tics", Bielefeld (1975). [29J F.Schlogl: Chemical Reaction t-1odels for Non-Equilibrium Phase •

~, Transitions. ,Zeitschrift fUr Physik 253, 147-161 (1972).

[30] O.Lanford III: CIME Slli~er Course in Statistical Mechanics, Bres-

t. sanone, Italy (1976). [31J G.Rushbrooke, H.Ursell: On One-Dimensional Regular Assemblies.

ilS Proc. Carob. Phil. Soc. ii, 263-271 (1948). [32J M.Baur, L.Nosanow: Phase Transitions in One-Dimensional Order- Disorder Systems: Application to Helix-Random-Coil Transi-

tion in Polymers. J. Chern. Phys. 22, 153-160 (1962). L.van Hove: Sur l'Integrale de Configurationpourles Systemes des

Particules a Une Dimension. Physica~, 137-143 (1950). [3~ D.Ruelle: "Statistical I-lechanics, Rigorous Results". Benjamin,

Ne~l York (1969).

[35] F.Dyson: Existence and Hature of Phase Transitions in One-Dimen-

:s. sional Ising Ferromagnets. In "Mathematical Aspects of Sta-

tistical !1echanics". Am. 1lath. Soc" Providence, R.r. (1972).

r~ E.lsing: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift

fUr Physik 11, 253-258 (1925).

r~ V.Kolomytsev, A.Rokhlenko: Sufficient Conditions for Ordering of

an Ising Ferromagnet. Teor. Mat. Fiz. ~, No 3, 322-331

(1978).

Q~ P.Anderson, G.Yuval: Exact Results in the Kondo Problem: Equiva- :>. '. 144 ,-

lence to a Classical One-Dimensional Coulomb Gas. Phys. , Rev. Lett. ~' 89-92 (1969). I P.Anderson, G.Yuval, D.IIamann: Scaling Theory for the Kondo and I [39] ! One-Dimensional Ising Hodels. Solid State Commun. ~' 1033 j. - 1037 (1970). ,I

[4~ F.Dyson: An Ising Ferromagnet with Discontinuous Long Range Or- I der. Commun. Math. Phys. 31, 269-283 (1971). I I [41] P.Ehrenfest: Phasenumwandlungen im liblichen und erweiterten Sinn, ..

klassifiziert nach den entsprechenden Singularitaten des I Thermodynamischen Potentials. In "P.Ehrenfest, Collected

Papers", ed. M.Klein, North Holland, Amsterdam, Nether- \.

lands (1959).

~~ G.Gallavotti, F.Lin: One-Dimensional Lattice Gases with Rapidly

Decreasing Interactions. Arch. Rat. Mech. and Analys. 22, . ' ,I:. 181-191 (1970). i i i [43] F.Dyson: Existence of a Phase Transition in a One-Dimensional

Ising Ferromagnet. Commun. Math. Phys. ~' 91-107 (1969).

~4] F.Dyson: Non-Existence of' Spontaneous Magnetisation in a One-Di-

mensional Ising Ferromagnet. Commun. Math. Phys. ~' 212-

215 (1969).

~5] lLFisher: The Theory of Condensation and the Critical Point. Physics 2, 255-283 (1967).

~6] H.Araki: Gibbs States of a'..one-Dimensional Quantum Lattice. COffi.'ll. Math. Phys • .li, 120-157 (1969).

~7) D.Ruelle: Equilibrium Statistical Mechanics of One-Dimensional

Classical Lattice Systems. In "International Symposium ..\' on Mathematical Problems in Theoretical Physics", ed. H. .. ~ I­ ~' " Araki, Lecture Notes in Physics,vol Springer Verlag, r'l Berlin (1975). ~1 , ' ~8] R.Dobrushin: Analyticity of Correlation Functions in One-Dimensio- 1· " nal Classical Systems with Slowly Decreasing Potentials.

==_.=~_ _=_.. .-..-,---:"....,..--00_='--::._~------.-..--- =.__ ... -..",.. = __ ~ • J

flJj

Gommun. !1ath.•.Phys.. .32, 269-.289 (1973).

~~ H.Kramers, G.Wannier: Statistics of the Two-Dimensional Ferromag­

net. Part I. Phys. Rev. ~, 252-262 (1941).

Ne~rest 33 [5q E.Montroll: Statistical Mechanics of Neighbour Systems. J. Cher.1. Phys. 2., 70(-721 (1941). [51] D.Ruelle:··<5tatis·ti-eal·I·1eehanics .of a,.. One-Dimensional Lattice Gas.

Commun. Math. Phys. 2., 267-278 (1968). n, [52] G.Gallavotti, S.tliracle-Sole: Absence of Phase Transitions in

5 Hard-Core One-Dimensional Systems with Long Range Inter- j actions. J. Hath. Phys • .l..!, 147-154 (1969). nd T.Kato: "Perturbation Theory for Linear Operators". 2 ed., ch.

3, 4. Springer Verlag, Berlin (1976).

[54] See [22], Theorem 5.26, p. 91 • [55] "1. Kac: Mathematical Hechanism of Phase Transitions. In "Brandeis University Summer Institute in Theoretical Physics", vol.

1, Gordon-Breach, New York (1966).

[56] E.Stanley: D-Vector Models or "Universality Hamiltonian": Proper-

ties of Isotropically-Interacting D-Dimensional Classical

Spins. In "Phase Transitions and Critical Phenomena",

vol. 3, eds. C.Domb, Ii-Green, Academic Press, London(1974).

[57] . G.Jameson: "Topology and Normed Spaces". Theorem 28.2. Chapman

and Hill, London (1974).

See [57] , ch. 15.

See [34] , ch. 7.

P.Halmos: lIr1easure Theory" , See [22J ' Proposition 1. 4.

ditional Probabilities and Conditions of its Regularity.

Theory Prob. Applic. 22, 197-224 (19G8).

}- Gibbsian Random Fields for Lattice Systems with Pairwise

Interactions. Func. Anal. Appl. ~, 292-301 (1968). -::. '.

R.Dobrushin: The Problem of Uni~ueness of a Gibbsian Random Field

and the Problem of Phase Transitions. Funct. Anal. Appl.

3.,302-312 (1968).

O.Lanford, D.Ruelle: Observables at Infinity and States with Short

Range Correlations in Statistical l-lechanics. Commun. ~lath.

Phys. 12, 194-215 (1969). .Jj! See [22J ' ch. 1.6.

See _[22] , Theorem 1.8.

J•Lebmlitz, O. Penrose: l-Iodern Ergodic Theory. Physics Today 3.§.,

no 2, 23-29 (1973).

~~ C.Gruber: On the Definition of Phase Transition. J. Stat. Phys •

.li, 81-86 (1976).

[69) See [22] , ch. 3.

[70] G. Gallavotti, S .11iracle Sole: Statistical r-lechanics of Lattice

Systems. Commun. Math. Phys. 2, 317-323 (1967). L.Onsager: Crystal Statistics: I. A Two-Dimensional Model with

an ~rder-Disorder Transition. Phys. Rev. i2, 117-149 (1944).

[72] T.LEie, C.Yang: Statistical- Theory of Equations of State and Phase

Transitions, I, II. Phys. Rev. !l2, 404-419 (1952). [73] F.Dunlop: Zeroes of Partition Functions via Correlation Inequali-

ties. IHES-Preprint, Bures sur Yvette (1977).- r~ B.Souillard: Links Between Decay Properties of Correlations and

Analyticity of the Pressure and Correlation Functions. In

"International Symposium on 1-1athematical Problems in Theo-

retical Physics", ed. H.Araki, Lect. Notes in Physics,

vol. ~, Springer Verlag, Berlin (1975).

~5] J.Frohlich, R.Israel, E.Lieb, B.Simon: Phase Transitions and Re-

flection Positivity: I. General Theory and Long Range Lat-

tice 11odels. Commun. :-1ath. Phys. 62, 1-34 (1978).

[76J O.Perron: Zur Theorie der :Iatrizen. 11ath•.'Inn. ,§,i, 248-263 (1907). r~ G.Frobenius: Uber Matrizen aus nicht negativen Elementen. S.-B. •

...... ~.~~-_._--~--_.------;....;'--....;;.,;;;.;;;;;;;.. =..;;...:;.;;;;_.- ld Preuss. Akd. \'1iss. Berlin, 456-477 (1912). ... [7~ F.Ledrappier: Mesures d'tquilibre.sur un Reseau. Commun. Math. Phys. 22, 119-128 (1973). :lrt [79] G.Gallavotti: Ising ~Iodel and Bernoulli· Schemes in One Dimension. h. Commun. Hath. Phys. E, 183-190 (1973).

[8~ G.Joyce: Classical Heisenberg Model. Phys. Rev. 155,.478-491

(1966) •

[81] J.Rae: The Free Energy of the Classical Heisenberg Model with An­

isotropic Interactions. J. Phys. A7, 1349-1359 (1974).

[8~ G.Joyce: Exact Results for the One-Dimensional, Anisotropic Clas­

sical Heisenberg Model. Phys. Rev. Lett. ~, 581-583(1967).

[83} 1.Gohberg, H. Krein:' "Introduction to the Theory of Linear Nonself­

adjoint Operators". p. 122. Am. Hath. Soc., Providence,

R.1. (1969).

[84J R.Jentzsch: Uber "Integraloperatoren 'mit posit'±Vem' Kern. Crelles

J. Math. lil, 235-244 (1912). :4) • [85J C.Thompson: "Mathematical Statistical t·1echanics", p. 127. The ;e Macmillan Company, New York (1972).

[86J L.Tonks: The Complete Equation of State of One, T\olo and Three

Dimensional Gases of Hard Elastic Spheres. Phys. Rev. 50,

955-963 (1936).

~~ H.Takahashi: Eine einfache Methode zur Behandlung der Statisti­

schen Mechanik eindimensionaler Substanzen. Proc. Phys. Math. Soc. Japan; Tokyo 3.!, 60-63 (1942).

~~ J.Lebo\olitz, E.Presutti: Statistical Mechanics of Systems of Un­

bounded Spins. Preprint Yeshiva University, New York

(1976) .

[89] r·l.Fisher: The Free Energy of a ~1acroscopic System. Arch. Rat.

Mech. Anal. ~, 377-410 (1964).

[901 I.Gelfand, N. Vilenkin: "Generalized Functions", vol.4. Academic

Press, New York (1964). 148

~D A.Grothendieck: Produits Tensoriels Topologiques et tspaces Nuc­

leaires. Ch. II. § 1, no 2, p. 9. Mem. Am. Math. Soc. 1i, (1955) . [92] D.!layer, K.Viswanathan: On the Zeta Function of a One-Dimensional Classical· System of Hard-Rods. Commun. Math. Phys. g, i.

175-189 (1977).

[93] See [53] , ch. 7.

[94] See [83J , p. 164.

[95J See [91] , ch. II. § 1 , no 4 , Corollaire 4 .

[96J See [53] , ch. 7. ~7] 11.Kac: On the Partition Function of a One-Dimensional Gas. Phys.

Fluids ~, 8-12 (1959).

~8] G.Baker: One-Dimensional Order-Disorder Model which Approaches a

Second Order Phase Transition. Phys. Rev. ~, 1477-1484

(1961).

[99] 11.Kac, G.Uhlenbeck, P.Hemmer: On the Van der Waals Theory of the Vapor-Liquid Equilibrium. I. Discussion of a One-Dimensio-

nal ~odel. J. Math. Phys. !, 216-228 (1964).

II. Discussion of the Distribution Functions. J. Math.

Phys .. !, 229-247 (1964). III. Discussion of the Critical Region. J. Math. Phys. 2' 60-74 (1964).

[100] D.Ne\vman: Equation of State for a Gas with a Weak, Long-Range Po- sitive Potential. J. Math. Phys. 2, 1153-1157 (1964). ~01] P.Hemmer, J.Lebowitz: Systems with Weak Long-Range Potentials. In

"Phase Transitions and Critical Phenomena", vol. 5b'. eds.

C.Domb, a.Green, Academic Press, London (1976).

[102J See remark by M.Kac in [55] . ~

[103] K.VisHanathan: Statistical Hechanics of a One-Dimensional Lattice

Gas Hith Exponential- Polynomial Interactions. Commun. 1·1ath. Phys. !2., 131,-141 (1976). ~ . IJ..\ : - =-l~ ,.. • • ~•...

149

QO~ D.Mayer: On a Zeta Function Related to the Continued Fraction

Transformation. Bull. Soc. Math. France 1Qi, 195-203(1976).

(105) D.11ayer: The Transfer !·latrix of a One-Sided Subshift of Finite

,1 Type with Exponential Interactions. Lett. Math. Phys. 1, -335-3-43 -(1976).

D.Ruelle: Zeta-Functions for Expanding ~aps and Anosov Flows.

Invent. [-lath. li, 231.242 (1976).

[107] See [22], Theorem 5.26.

[108J 11. Krein, ,1. Rutman : Linear Operators Leaving Invariant a Cone in a

Banach Space. Transl. Am. Math. Soc. Ser. 1,12, 199-325

(1950) •

[109] 11. Krasnoselskii, L .Ladyzenskii: Structure of a Spectrum of Posi­

tive Non-Homogeneous Operators. Trudy 110skovskovo Matern.

ob. ~, (1954).

Dl~ M.Krasnoselskii:"Positive Solutions of Operator Equations". Ch.2.

P. Noordhoff, Groningen (1964).

~ 0- 11] J .Dieudonne: "Foundations of Hodern Analysis", p. 209. Academic Press, New York (1969).

~1~ J.Lebowitz, O.Penrose: Rigorous Treatment of the Van der Waals-

Maxwell Theory of the Liquid-Vapor Transition. J. Math.

Phys. 2,98-113 (1966).

[113] R .Potts: Some Generalized Order-Disorder Transformations. Proc.

Carob. Phil. Soc. ~, 106-109 (1952).

C.Domb: Configurational Studies of the Potts 110dels. J. Phys. A7, n 1335-1348 (1974). L.Mittag, I1.Stephen: Dual Transfornations in Many Component Ising

110dels. J. Hath. Phys. ]2, 441-450 (1971).

~1~ D.Mayer, K.Viswanathan: Statistical Mechanics of One-Dimensional

~ Ising and Potts t10dels ~lith Exponential Interactions.

Physica 891\,97-112 (1977).

[115) L. Nachbin: "Topology on Spaces of Holomorphic Mappings". Springer • . ".-..'.

150

~1~ D.Pizanelli: ~pplications Analytiques en Dimension Infinie. Bull.

Soc. 1,lath. France 2.§., 181-191 (1972). \- [l17J D.Mayer: On Composition Operators on Banach Spaces of Holomorphic !

Functions. To appear in J. Funct. Anal. ~, (1980). ("') i

[118] D.Ruelle: Generalized Zeta-Functions for Axiom A Basic Sets. Bull. Ii Am. ~Iath. Soc. 62,153-156 (1976). I. I [119] E.Artin, D.Mazur: On Periodic Points. Ann. Math. (2) ~, 82-99 I (1965). D2~ P.Walters: Ergodic Theory-Introductory Lectures, p. 18. Lecture i I' Notes in Math., vol. 458, Springer Verlag, Berlin (1975). I ~21] j': F.Landau:"Darstellung und BegrUndung einiger neuerer Ergebnisse I, der Funktionentheorie". § 17. Springer Verlag, Berlin i

(1929).

[12~ R.Bowen, O.Lanford: Zeta Functions of Restrictions of the Shift

Transformation. Proc. Symp. Pure ~ath. l!, 43-49 (1970). -/ I',I ; [123J See [9~ , ch. II, § 2, no 2, Lemme 6 • ,

[12~ M.Schechter: On the Spectra of Operators on Tensor Products. J.

Funct. Anal. i, 95-100 (1969).

[125] See r9~, ch. II, § 1, no 4, Theoreme 4. i i I J [126] G.Gallavotti: Funzioni Zeta ed Insiemi Basilari. Accad. Lincei. ! I Rend. Sc. Fis. Ilat. e Nat. il, 309-317 (1976). I

[127J B.Felderhof, !-I;Fisher: Phase Transitions in One-Dimensional Clu- ster Interaction Fluids. ~nn. Physics 58, 176-300 (1970). I [12~ L.Schwartz: Produits Tensoriels Topologiques d-tspaces Vectoriels

Topologiques. tspaces Vectoriels Topologiques Nucleaires.

Applications. Seminaire Schwartz 1953/54. Secretariat I,

11ather.tatique , Paris (1954). " "-, [129] R.Schatten: "~ Theory of Cross Spaces". Princeton Univ. Press, "It; Princeton (1950). r' IJ [130] A.Grothcndieck: La Thcorie de Fredholm. Bull. Soc. Math. France, b'j ch. II. .!!i, 319-384 (1956). ._---..-__ 1 ,..- ..'.

=--

151

[131J See [91] ch. II, § 1, no 1.

[132J See [57] , ch. 30. ic [133J C.Earle, R.Hamilton: A Fixed Point Theorem for Holomorphic Hap­

pings. In "Global Analysis", Proc. Symp. Pure ~lath., vol. n. -... ~ ~.,. ed. S.CheLn, S.Smale. Am. ~lath. Soc., Providence,

R.L (1970).

[134J J .. Zabreyko et al.: "Integral Equations-a Reference Text". Ch. V,

§ 5. Noordhoff, Leyden (1975).

[135J D .r·layer: Spectral'Properties" of Certain Composition Operators

) . Arising in Statistical l1echanics. Commun. r·lath. Phys. ~,

1-8 (1979)"

[136J E. Helfand: Statistical r·lechanics of Systems with Long-Range In­

teractions. In "The Equilibrium Theory of Classical Flu­

ids". Eds. H.Frisch, J.Lebowitz. Benjamin, New York(l Q64).

D37J H. Behnke, P.Thullen: "Theorie der Funktionen mehrerer komplexer

Veranderlichen". Ch. V. Second Edition, Springer Verlag,

Berlin (1970).

) .

1s

3.