New Examples of Weakly Compact Approximation in Banach Spaces

Total Page:16

File Type:pdf, Size:1020Kb

New Examples of Weakly Compact Approximation in Banach Spaces Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 33, 2008, 429–438 NEW EXAMPLES OF WEAKLY COMPACT APPROXIMATION IN BANACH SPACES Eero Saksman and Hans-Olav Tylli University of Helsinki, Department of Mathematics and Statistics P.O. Box 68, FI-00014 University of Helsinki, Finland; eero.saksman@helsinki.fi University of Helsinki, Department of Mathematics and Statistics P.O. Box 68, FI-00014 University of Helsinki, Finland; [email protected].fi Abstract. The Banach space E has the weakly compact approximation property (W.A.P.) if there is C < 1 so that the identity map IE can be uniformly approximated on any weakly compact subset D ½ E by weakly compact operators V on E satisfying kV k · C. We show that the spaces N(`p; `q) of nuclear operators `p ! `q have the W.A.P. for 1 < q · p < 1, but that the Hardy space H1 does not have the W.A.P. 0. Introduction The Banach space E has the weakly compact approximation property (abbrevi- ated W.A.P.) if there is C < 1 so that for any weakly compact set D ½ E and " > 0 one finds a weakly compact operator V 2 W (E) satisfying (0:1) sup kx ¡ V xk < " and kV k · C: x2D Here V 2 W (E) if the image VBE of the closed unit ball BE of E is relatively weakly compact. This concept of weakly compact approximation is natural, but the resulting property differs completely from the classical bounded approximation properties defined in terms of finite rank or compact operators (for more about these properties see e.g. [C]). The W.A.P. was introduced in [AT], and some applications can be found in [AT] and [T2]. It was later more systematically studied in [OT] from the perspective of Banach space theory. The W.A.P. remains fairly rare and elusive for non-reflexive spaces (obviously any reflexive space has it). The following list reviews some of the known results. (0.2) If E is a L 1- or L 1-space, then E has the W.A.P. if and only if E has the 1 Schur property, see [AT, Cor. 3]. Thus ` has the W.A.P., while c0, C(0; 1) and L1(0; 1) fail to have it. (0.3) The direct sums `1(`p) and `p(`1) have the W.A.P. for 1 < p < 1, [OT, Prop. 5.3]. 2000 Mathematics Subject Classification: Primary 46B28; Secondary 46B20. Key words: Weakly compact approximation, nuclear operators, Hardy space. Supported by the Academy of Finland projects #113286 and #118765 (E.S.), #53893 and #210970 (H.-O.T.). 430 Eero Saksman and Hans-Olav Tylli (0.4) The quasi-reflexive James’ space J, as well as its dual J ¤, have the W.A.P., [OT, Thm. 2.2 and 3.3]. On the other hand, there is [ArT, Prop. 14.11] a quasi-reflexive hereditarily indecomposable space X that fails to have the W.A.P. Moreover, the related James’ tree space JT fails to have the W.A.P., [OT, Thm. 6.5]. As the first result of this note we show that the spaces N(`p; `q) consisting of nuclear operators have the W.A.P. for 1 < q · p < 1 (note that N(`p; `q) is reflex- ive if q > p). This result, which was motivated by timely questions of Zacharias and Defant, includes the Schatten trace class space C1 for p = q = 2. Secondly, we show that the Hardy space H1 does not have the W.A.P., which solves a question from [AT, p. 370] in the negative. In order to determine whether a given space E has the W.A.P. or not one is often forced to rely on very specific properties of E, and there still remains fairly concrete Banach spaces for which this property is not decided (see e.g. the Problems in Section 2 as well as [OT]). 1. The spaces N(`p; `q) of nuclear operators have the W.A.P. Let E and F be Banach spaces. Recall that T : E ! F is a nuclear operator, ¤ ¤ denoted T 2 N(E; F ), if there are sequences (xj ) ½ E and (yj) ½ F so that P1 ¤ P1 ¤ ¤ j=1 kxj k kyjk < 1 and T = j=1 xj ­ yj. Here xj ­ yj denotes the rank-1 ¤ operator x 7! xj (x)yj. Then (N(E; F ); k ¢ kN ) is a Banach space, where the nuclear norm of T 2 N(E; F ) is ½ X1 X1 ¾ ¤ ¤ kT kN = inf kxj k kyjk : T = xj ­ yj : j=1 j=1 Recall that kASBkN · kAk kBk kSkN whenever S 2 N(E; F ) and A; B are com- 2 patible bounded operators. One may isometrically identify N(` ) = C1, where C1 is the Schatten trace class space, see e.g. [P, Sect. 0.b] or [Pi, Sect. 2.11]. Theorem 1 below is the main result of this section. Observe that in its statement the spaces N(`p; `q) are actually reflexive for 1 < p < q < 1, so that only the cases 1 < q · p < 1 contain non-trivial information. In fact, N(`p; `q) = K(`q; `p)¤ in the trace-duality hU; V i = tr(VU);U 2 N(`p; `q);V 2 K(`q; `p); where the space K(`q; `p) of compact operators `q ! `p is reflexive once 1 < p < q < 1, see e.g. [R, Cor. 2.6] or [K, Sect. 2, Cor. 2]. Theorem 1 can also be rephrased p q in the terms of the projective tensor products ` ­b ¼` , see the Remarks following Lemma 2. Theorem 1. N(`p; `q) has the W.A.P. whenever 1 < p; q < 1. The proof of Theorem 1 is based on Lemma 2 below, which contains a basic characterization of the relatively weakly compact subsets of the non-reflexive spaces p q p N(` ; ` ) for 1 < q · p < 1. Let (ej) be the unit vector basis of ` for 1 < p < 1. New examples of weakly compact approximation in Banach spaces 431 p We denote the natural basis projection of ` onto [e1; : : : ; en] by Pn, and set Qn = I ¡Pn for n 2 N. For m < n we also put P(m;n] = Pn ¡Pm = PnQm = QmPn, which p is the natural projection of ` onto [em+1; : : : ; en]. We denote the corresponding basis q e e e projections on ` by Pn; Qn and P(m;n], respectively. We will frequently use the facts e e p q that kS ¡ PnSPnkN ! 0 and kQnSQnkN ! 0 as n ! 1 for any S 2 N(` ; ` ). Lemma 2. Suppose that 1 < q · p < 1 and let D ½ N(`p; `q) be a bounded subset. Then D is relatively weakly compact in N(`p; `q) if and only if e (1:1) lim sup kQnSQnkN = 0: n!1 S2D We first complete the proof of Theorem 1 with the help of (1.1) before estab- lishing the more technical Lemma 2. Proof of Theorem 1. We may assume that 1 < q · p < 1 since N(`p; `q) is reflexive for 1 < p < q < 1, see the comment preceding Theorem 1. Suppose that D ½ N(`p; `q) is a weakly compact subset and let " > 0 be given. Write ¡ ¢ e e e e e (1:2) S = PnSPn + PnSQn + QnSPn + QnSQn ´ Ãn(S) + QnSQn p q p q p q for S 2 N(` ; ` ) and n 2 N. Here Ãn : N(` ; ` ) ! N(` ; ` ) for n 2 N are the e e e p q bounded linear maps defined by Ãn(S) = PnSPn+PnSQn+QnSPn for S 2 N(` ; ` ). Clearly kÃnk · 3 for any n. It follows from (1.1) and (1.2) that e sup kS ¡ Ãn(S)kN = sup kQnSQnkN ! 0 as n ! 1; S2D S2D so that supS2D kS ¡ Ãn(S)kN < " once n is large enough. Consequently it will be enough to verify that p q (1:3) Ãn 2 W (N(` ; ` )); n 2 N: This fact can be deduced from a suitable combination of general results, see the proofs of [LS, Prop. 2.2 and 2.3] or the survey [ST, p. 262], but we sketch a direct argument for completeness. Note first that the maps ¤ ¤ ¤ ¤ ¤ 'y;y¤ (S) = (y ­ y)S = S y ­ y; Áx;x¤ (S) = S(x ­ x) = x ­ Sx are weakly compact on N(`p; `q) for any y¤ 2 `q0 , y 2 `q, x 2 `p and x¤ 2 `p0 , where p0 0 ¤ and q are the respective dual exponents. In fact, 'y;y¤ (BN(`p;`q)) ½ ky k kyk(B`p0 ­ ¤ ¤ ¤ y), since kS y ­ ykN · ky k kyk for S 2 BN(`p;`q). Clearly the set B`p0 ­ y is relatively weakly compact in N(`p; `q), since z¤ 7! z¤ ­ y embeds `p0 isomorphically p q into N(` ; ` ) for y 6= 0. The case of Áx;x¤ is analogous. Finally, (1.3) follows since the individual operators defining Ãn, such as S 7! e PnSQn, are sums of weakly compact ones composed with bounded ones. The proof of Theorem 1 will be complete once Lemma 2 has been established. ¤ Proof of Lemma 2. Suppose first that (1.1) holds. According to (1.2) we get that (1:4) D ½ Ãn(D) + ±nBN(`p;`q); n 2 N; 432 Eero Saksman and Hans-Olav Tylli e where ±n ´ supS2D kQnSQnkN ! 0 as n ! 1. Here Ãn(D) is a relatively weakly compact subset of N(`p; `q) for all n by (1.3). It is a standard fact that (1.4) then implies that D is a relatively weakly compact subset of N(`p; `q).
Recommended publications
  • Multivariable Approximation by Convolutional Kernel Networks
    ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 118–122 http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c 2016 V. K˚urková Multivariable Approximation by Convolutional Kernel Networks Veraˇ K˚urková Institute of Computer Science, Academy of Sciences of the Czech, [email protected], WWW home page: http://www.cs.cas.cz/ vera ∼ Abstract: Computational units induced by convolutional widths parameters) benefit from geometrical properties of kernels together with biologically inspired perceptrons be- reproducing kernel Hilbert spaces (RKHS) generated by long to the most widespread types of units used in neu- these kernels. These properties allow an extension of rocomputing. Radial convolutional kernels with vary- the maximal margin classification from finite dimensional ing widths form RBF (radial-basis-function) networks and spaces also to sets of data which are not linearly separable these kernels with fixed widths are used in the SVM (sup- by embedding them into infinite dimensional spaces [2]. port vector machine) algorithm. We investigate suitabil- Moreover, symmetric positive semidefinite kernels gener- ity of various convolutional kernel units for function ap- ate stabilizers in the form of norms on RKHSs suitable for proximation. We show that properties of Fourier trans- modeling generalization in terms of regularization [6] and forms of convolutional kernels determine whether sets of enable characterizations of theoretically optimal solutions input-output functions of networks with kernel units are of learning tasks [3, 19, 11]. large enough to be universal approximators. We com- Arguments proving the universal approximation prop- pare these properties with conditions guaranteeing positive erty of RBF networks using sequences of scaled kernels semidefinitness of convolutional kernels.
    [Show full text]
  • GALERKIN APPROXIMATION in BANACH and HILBERT SPACES Wolfgang Arendt, Isabelle Chalendar, Robert Eymard
    GALERKIN APPROXIMATION IN BANACH AND HILBERT SPACES Wolfgang Arendt, Isabelle Chalendar, Robert Eymard To cite this version: Wolfgang Arendt, Isabelle Chalendar, Robert Eymard. GALERKIN APPROXIMATION IN BA- NACH AND HILBERT SPACES. 2019. hal-02264895v2 HAL Id: hal-02264895 https://hal.archives-ouvertes.fr/hal-02264895v2 Preprint submitted on 19 Dec 2019 (v2), last revised 9 Jul 2020 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GALERKIN APPROXIMATION IN BANACH AND HILBERT SPACES W. ARENDT, I. CHALENDAR, AND R. EYMARD Abstract. In this paper we study the conforming Galerkin ap- proximation of the problem: find u such that a(u, v)= L, v for all v , where and are Hilbert∈U or Banach spaces, ha is ai continuous∈ V bilinear orU sesquilinearV form and L ′ a given data. The approximate solution is sought in a finite dimensional∈ V subspace of , and test functions are taken in a finite dimensional subspace of U. We provide a necessary and sufficient condition on the form a forV convergence of the Galerkin approximation, which is also equivalent to convergence of the Galerkin approximation for the adjoint problem. We also characterize the fact that has a finite dimensional Schauder decomposition in terms of propertiesU related to the Galerkin approximation.
    [Show full text]
  • Approximation Boundedness Surjectivity
    APPROXIMATION BOUNDEDNESS SURJECTIVITY Olav Kristian Nygaard Dr. scient. thesis, University of Bergen, 2001 Approximation, Boundedness, Surjectivity Olav Kr. Nygaard, 2001 ISBN 82-92-160-08-6 Contents 1Theframework 9 1.1 Separability, bases and the approximation property ....... 13 1.2Thecompletenessassumption................... 16 1.3Theoryofclosed,convexsets................... 19 2 Factorization of weakly compact operators and the approximation property 25 2.1Introduction............................. 25 2.2 Criteria of the approximation property in terms of the Davis- Figiel-Johnson-Pe'lczy´nskifactorization.............. 27 2.3Uniformisometricfactorization.................. 33 2.4 The approximation property and ideals of finite rank operators 36 2.5 The compact approximation property and ideals of compact operators.............................. 39 2.6 From approximation properties to metric approximation prop- erties................................. 41 3 Boundedness and surjectivity 49 3.1Introduction............................. 49 3.2Somemorepreliminaries...................... 52 3.3 The boundedness property in normed spaces . ....... 57 3.4ThesurjectivitypropertyinBanachspaces........... 59 3.5 The Seever property and the Nikod´ymproperty......... 63 3.6 Some results on thickness in L(X, Y )∗ .............. 63 3.7Somequestionsandremarks.................... 65 4 Slices in the unit ball of a uniform algebra 69 4.1Introduction............................. 69 4.2Thesliceshavediameter2..................... 70 4.3Someremarks...........................
    [Show full text]
  • Free Banach Spaces and the Approximation Properties
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 5, May 2014, Pages 1681–1687 S 0002-9939(2014)11933-2 Article electronically published on February 18, 2014 FREE BANACH SPACES AND THE APPROXIMATION PROPERTIES GILLES GODEFROY AND NARUTAKA OZAWA (Communicated by Thomas Schlumprecht) Abstract. We characterize the metric spaces whose free spaces have the bounded approximation property through a Lipschitz analogue of the local reflexivity principle. We show that there exist compact metric spaces whose free spaces fail the approximation property. 1. Introduction Let M be a pointed metric space, that is, a metric space equipped with a distin- guished point denoted 0. We denote by Lip0(M) the Banach space of all real-valued Lipschitz functions defined on M which vanish at 0, equipped with the natural Lip- schitz norm |f(x) − f(y)| f =sup ;(x, y) ∈ M 2,x= y . L x − y ∈ For all x M, the Dirac measure δ(x) defines a continuous linear form on Lip0(M). Equicontinuity shows that the closed unit ball of Lip0(M) is compact for pointwise { ∈ } ∗ convergence on M, and thus the closed linear span of δ(x); x M in Lip0(M) is an isometric predual of Lip0(M). This predual is called the Arens-Eells space of M in [We] and (when M is a Banach space) the Lipschitz-free space over M in [GK], denoted by F(M). We will use this notation and simply call F(M)thefree space over M.WhenM is separable, the Banach space F(M) is separable as well, { ∈ } ∗ since the set δ(x); x M equipped with the distance induced by Lip0(M) is isometric to M.
    [Show full text]
  • Approximation Properties for Group C*-Algebras and Group Von Neumann Algebras
    transactions of the american mathematical society Volume 344, Number 2, August 1994 APPROXIMATION PROPERTIES FOR GROUP C*-ALGEBRAS AND GROUP VON NEUMANN ALGEBRAS UFFE HAAGERUP AND JON KRAUS Abstract. Let G be a locally compact group, let C*(G) (resp. VN(G)) be the C*-algebra (resp. the von Neumann algebra) associated with the left reg- ular representation / of G, let A(G) be the Fourier algebra of G, and let MqA(G) be the set of completely bounded multipliers of A(G). With the com- pletely bounded norm, MqA(G) is a dual space, and we say that G has the approximation property (AP) if there is a net {ua} of functions in A(G) (with compact support) such that ua —»1 in the associated weak '-topology. In par- ticular, G has the AP if G is weakly amenable (•» A(G) has an approximate identity that is bounded in the completely bounded norm). For a discrete group T, we show that T has the AP •» C* (r) has the slice map property for sub- spaces of any C*-algebra -<=>VN(r) has the slice map property for a-weakly closed subspaces of any von Neumann algebra (Property Sa). The semidirect product of weakly amenable groups need not be weakly amenable. We show that the larger class of groups with the AP is stable with respect to semidirect products, and more generally, this class is stable with respect to group exten- sions. We also obtain some results concerning crossed products. For example, we show that the crossed product M®aG of a von Neumann algebra M with Property S„ by a group G with the AP also has Property Sa .
    [Show full text]
  • P-Quasi-Λ-Nuclear Operators Between Locally Convex Spaces * ﺩ
    Al-Aqsa University Journal (Natural Sciences Series) , Vol.14, No.2, Pages 18-26, Jan. 2010 ISSN 2070-3155 p-Quasi-λ-Nuclear Operators Between Locally Convex Spaces * ﺩ. ﺯﻴﺎﺩ ﺼﺎﻓﻲ * ﺩ. ﺃﺤﻤﺩ ﺍﻻﺸﻘﺭ ﺍﻟﻤﻠﺨﺹ ﻓﻲ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﻗﻤﻨﺎ ﺒﺘﻌﻤﻴﻡ ﻤﻔﻬﻭﻡ ﺍﻟﻤﺅﺜﺭﺍﺕ 2- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ (λ⊆ l1) ﺇﻟﻰ p- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﻤﺤﺩﺒﺔ ﺍﻟﻤﺤﻠﻴﺔ ( ∞p >0, λ⊆ l)، ﻭﻜﺫﺍﻟﻙ ﺩﺭﺴﻨﺎ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺅﺜﺭﺍﺕ p- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ λ- ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ ﺸﺒﻪ-λ-ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺒﺭﻫﻨﺎ ﺃﻥ ﺘﺭﻜﻴﺏ ﻤﺅﺜﺭﻴﻥ ﺃﺤﺩﻫﻤﺎ p- ﺸﺒﻪ-λ- ﻨﻭﻭﻱ ﻴﻜﻭﻥ p - ﺸﺒﻪ-λ- ﻨﻭﻭﻱ . ABSTRACT In this paper we generalize the concept of 2-quasi-λ-nuclear operators between Normed spaces (λ⊆ l1) to p-quasi-λ-nuclear operators between locally convex spaces (p >0, λ⊆ l∞ ) and we study the relationship between p-quasi-λ-nuclear, nuclear operators, λ-nuclear, quasi-nuclear and quasi-λ- nuclear. Also we prove that the composition of two operators, one of them is a p-quasi-λ-nuclear, is again a p-quasi-λ-nuclear operator. * ﻗﺴﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ – ﻜﻠﻴﺔ ﺍﻟﻌﻠﻭﻡ- ﺠﺎﻤﻌﺔ ﺍﻷﻗﺼﻰ - ﻏﺯﺓ - ﻓﻠﺴﻁﻴﻥ. p-Quasi-λ-Nuclear Operators Between Locally… 1. Preliminary. By Shatanawi [5], the operator T from a normed space E into a normed space F is said to be 2-quasi-λ-nuclear if there is a sequence ()α n ∈ λ ( λ ⊆ l1 ) and a bounded sequence ()an in E ′ such that ∞ 12 ⎛⎞2 Tx≤〈〉∞∀∈⎜⎟∑ |α nn || x , a | < , x E. ⎝⎠n =1 In this paper, we generalize this definition to p-quasi-λ-nuclear operator between locally convex spaces where λ ⊆ l ∞ and p > 0 .
    [Show full text]
  • THE TIGHT APPROXIMATION PROPERTY 1. Introduction One Of
    THE TIGHT APPROXIMATION PROPERTY OLIVIER BENOIST AND OLIVIER WITTENBERG Abstract. This article introduces and studies the tight approximation property, a property of algebraic varieties defined over the function field of a complex or real curve that refines the weak approximation property (and the known cohomological obstructions to it) by incorporating an approximation condition in the Euclidean topology. We prove that the tight approximation property is a stable birational invariant, is compatible with fibrations, and satisfies descent under torsors of linear algebraic groups. Its validity for a number of rationally connected varieties follows. Some concrete consequences are: smooth loops in the real locus of a smooth compactification of a real linear algebraic group, or in a smooth cubic hypersurface of dimension 2, can be approximated by rational algebraic curves; homogeneous spaces of linear≥ algebraic groups over the function field of a real curve satisfy weak approximation. 1. Introduction One of the basic results of the theory of rationally connected varieties states that on any smooth and proper variety over C which is rationally connected—that is, on which two general points can be joined by a rational curve—any finite set of points can in fact be joined by a single rational curve (see [Kol96, Chapter IV, Theorem 3.9]). Questions on the existence of algebraic curves on algebraic varieties have been at the core of further developments of the theory. Graber, Harris and Starr [GHS03] have shown that a dominant map f : X B between smooth proper varieties over C, where B is a connected curve, admits→ a section if its geometric generic fibre is rationally connected.
    [Show full text]
  • The Version for Compact Operators of Lindenstrauss Properties a and B
    THE VERSION FOR COMPACT OPERATORS OF LINDENSTRAUSS PROPERTIES A AND B Miguel Mart´ın Departamento de An´alisisMatem´atico Facultad de Ciencias Universidad de Granada 18071 Granada, Spain E-mail: [email protected] ORCID: 0000-0003-4502-798X Abstract. It has been very recently discovered that there are compact linear operators between Banach spaces which cannot be approximated by norm attaining operators. The aim of this expository paper is to give an overview of those examples and also of sufficient conditions ensuring that compact linear operators can be approximated by norm attaining operators. To do so, we introduce the analogues for compact operators of Lindenstrauss properties A and B. 1. Introduction The study of norm attaining operators started with a celebrated paper by J. Lindenstrauss of 1963 [27]. There, he provided examples of pairs of Banach spaces such that there are (bounded linear) operators between them which cannot be approximated by norm attaining operators. Also, sufficient conditions on the domain space or on the range space providing the density of norm attaining operators were given. We recall that an operator T between two Banach spaces X and Y is said to attain its norm whenever there is x 2 X with kxk = 1 such that kT k = kT (x)k (that is, the supremum defining the operator norm is actually a maximum). Very recently, it has been shown that there exist compact linear operators between Banach spaces which cannot be approximated by norm attaining operators [30], solving a question that has remained open since the 1970s. We recall that an operator between Banach spaces is compact if it carries bounded sets into relatively compact sets or, equivalently, if the closure of the image of the unit ball is compact.
    [Show full text]
  • The Completely Bounded Approximation Property for Extended Cuntz–Pimsner Algebras
    THE COMPLETELY BOUNDED APPROXIMATION PROPERTY FOR EXTENDED CUNTZ–PIMSNER ALGEBRAS KENNETH J. DYKEMA AND ROGER R. SMITH Abstract. The extended Cuntz–Pimsner algebra E(H), introduced by Pimsner, is constructed from a Hilbert B, B–bimodule H over a C∗–algebra B. In this paper we investigate the Haagerup invariant Λ(·) for these algebras, the main result being that Λ(E(H)) = Λ(B) when H is full over B. In particular, E(H) has the completely bounded approxi- mation property if and only if the same is true for B. 1. Introduction The Haagerup invariant for a C∗–algebra A is defined to be the smallest constant Λ(A) for which there exists a net {φα : A → A}α∈N of finite rank maps satisfying lim kφα(x) − xk = 0, x ∈ A, and kφαkcb ≤ Λ(A), α ∈ N. (1) α If no such net exists then Λ(A) is defined to be ∞, while if Λ(A) < ∞ then A is said to have the completely bounded approximation property (CBAP). The definition of ∗ Λ(A) arose from [12, 8]. In the first of these it was shown that Cr (F2), the reduced C∗–algebra of the free group on two generators, has such a net of contractions, and a stronger result using complete contractions was obtained in the second paper. Sub- sequently, many examples of different values of Λ(·) were given in [6]. An interesting problem is to investigate the behavior of Λ(·) under the standard constructions of ∗ C –algebra theory. In [19], the formula Λ(A1 ⊗ A2) = Λ(A1)Λ(A2) was established for the minimal tensor product, while Λ(A oα G) = Λ(A) was proved for discrete amenable groups in [20] and for general amenable groups in [16].
    [Show full text]
  • XILIARY CONCEPTS ASD FACTS IBTERNAL REPOET (.Limited Distribution) 1
    AUXILIARY CONCEPTS ASD FACTS IBTERNAL REPOET (.Limited distribution) 1. If {e } , {h. } are orttLonormal tases in the Hilbert space H, and n n 1 o> , respectively, and X > 0 are the numbers such that the series > X International Atomic Energy Agency n _ / . n •,., and converges, then the formula Af = X (f,e )h defines an operator of the n n n Un'itad nations Educational Scientific and Cultural Organization n = 1 Hirbert-Schmidt type, and defines a nuclear operator vhich maps the space INTEBNATIOtTAL CENTRE FOR THEORETICAL PHYSICS H into if X < => n n = 1 By a nuclear space we mean a locally convex space with the property that every linear continuous map from this space into a Banach space is i [8,9,10] nuclear ' . 2. The inductive limit I ind. * (T ) is defined as follows: We are a« A a a CRITERION FOE THE IUCLEAEITY OF SPACES OF FUNCTIONS given a family {t (T )} of locally compact space, a linear space J and OF INFINITE NUMBER OF VARIABLES * a linear map u : * such that the family {u (4 )} spans the entire space * . The topology T , if $ is defined as the finest locally I.H. Gali ** convex topology such that the maps A. : $ (T } •+ *(T),remains continuous. A International Centre for Theoretical Physics, Trieste, Italy. basis of neighbourhoods of zero may be formed by sets T A(U ), where U are neighbourhoods of zero in $ (T ) . If $(T) is a Hausdorff space, then it is called the inductive limit of the spaces 4 (T ), and the topology T is called the inductive topology.
    [Show full text]
  • A Banach Space Without a Basis Which Has the Bounded Approximation Property
    A Banach space without a basis which has the bounded approximation property by STANISLAW J. SZAREK(1) Case Western Reverse University Cleveland, Ohio, U.S.A. 1. Introduction and the main results Let X be a separable Banach space (real or complex). A sequence (x~) of elements of X is called a (Schauder) basis iff every element of X can be uniquely written as a sum of a series Ent~X n, where the tn's are scalars. X is said to have the bounded approximation property (BAP) iff there exists a sequence (A n) of finite rank operators on X such that limn I~n x-x[[=O for x E X, i.e./x--the identity operator on X--is a limit of a sequence of finite rank operators in the strong operator topology. Also recall that X has the approximation property (AP) iff I x can be approximated by finite rank operators uniformly on compact sets. It is clear that Xhasabasis ~ XhasBAP =~ XhasAP The fact that the converse implication to the second one does not hold in general was discovered by Figiel and Johnson [8] soon after Enflo's example [7] of a space without AP. The main purpose of this paper is to show that also the implication "BAP=~basis" does not hold in general; this answers problems asked by a number of authors (e.g. [14], [18], [27]). Before stating the result, we recall more notation. For a given basis (x n) of X one denotes by bc (xn) (the basis constant of ix~)) the smallest K such that [[E~= 1 tnXn][<<.K[l~M=ltnXn[ [ for all N<<_M and all (tn); one further denotes be(X) =inf{bc(xn): (xn) a basis of X).
    [Show full text]
  • Random Linear Functionals
    RANDOM LINEAR FUNCTIONALS BY R. M. DUDLEYS) Let S be a real linear space (=vector space). Let Sa be the linear space of all linear functionals on S (not just continuous ones even if S is topological). Let 86{Sa, S) or @{S) denote the smallest a-algebra of subsets of Sa such that the evaluation x -> x(s) is measurable for each s e S. We define a random linear functional (r.l.f.) over S as a probability measure P on &(S), or more formally as the pair (Sa, P). In the cases we consider, S is generally infinite-dimensional, and in some ways Sa is too large for convenient handling. Various alternate characterizations of r.l.f.'s are useful and will be discussed in §1 below. If 7 is a topological linear space let 7" be the topological dual space of all con- tinuous linear functions on T. If 7" = S, then a random linear functional over S defines a " weak distribution " on 7 in the sense of I. E. Segal [23]. See the discussion of "semimeasures" in §1 below for the relevant construction. A central question about an r.l.f. (Sa, P), supposing S is a topological linear space, is whether P gives outer measure 1 to S'. Then we call the r.l.f. canonical, and as is well known P can be restricted to S' suitably (cf. 2.3 below). For simplicity, suppose that for each s e S, j x(s)2 dP(x) <oo. Let C(s)(x) = x(s).
    [Show full text]