XILIARY CONCEPTS ASD FACTS IBTERNAL REPOET (.Limited Distribution) 1

Total Page:16

File Type:pdf, Size:1020Kb

XILIARY CONCEPTS ASD FACTS IBTERNAL REPOET (.Limited Distribution) 1 AUXILIARY CONCEPTS ASD FACTS IBTERNAL REPOET (.Limited distribution) 1. If {e } , {h. } are orttLonormal tases in the Hilbert space H, and n n 1 o> , respectively, and X > 0 are the numbers such that the series > X International Atomic Energy Agency n _ / . n •,., and converges, then the formula Af = X (f,e )h defines an operator of the n n n Un'itad nations Educational Scientific and Cultural Organization n = 1 Hirbert-Schmidt type, and defines a nuclear operator vhich maps the space INTEBNATIOtTAL CENTRE FOR THEORETICAL PHYSICS H into if X < => n n = 1 By a nuclear space we mean a locally convex space with the property that every linear continuous map from this space into a Banach space is i [8,9,10] nuclear ' . 2. The inductive limit I ind. * (T ) is defined as follows: We are a« A a a CRITERION FOE THE IUCLEAEITY OF SPACES OF FUNCTIONS given a family {t (T )} of locally compact space, a linear space J and OF INFINITE NUMBER OF VARIABLES * a linear map u : * such that the family {u (4 )} spans the entire space * . The topology T , if $ is defined as the finest locally I.H. Gali ** convex topology such that the maps A. : $ (T } •+ *(T),remains continuous. A International Centre for Theoretical Physics, Trieste, Italy. basis of neighbourhoods of zero may be formed by sets T A(U ), where U are neighbourhoods of zero in $ (T ) . If $(T) is a Hausdorff space, then it is called the inductive limit of the spaces 4 (T ), and the topology T is called the inductive topology. We may also write ABSTRACT In this paper we shall formulate a new necessary and sufficient condition »(T) = H.ind (T. for *(T). see [8]. for the nuclearity of spaces of infinite number of variables, and we define new nuclear spaces which play an important role in the field of functional analysis To define the projective limit, let be a subspaee of © $, whose and quantum field theory. Also we shall give the condition for nuclearity of the i£ A 1 infinite weighted tensor product of nuclear spaces. elements * = { satisfy the relation 4. = u (<D ) whenever i < j. The space $ is called the projective limit of a family {4 } of locally compact Hausdorff spaces with respect to continuous linear mappings MRAMARE - TRIESTE u. : * • *. < 1) . [8,9,10] August 1977 ID 3 [4] Wolka has given an interesting criterion far the nuclearity of inductive * To be submitted for publication. limit and projective limit of Hilbert spaces. ** On leave of absence from Mathematics Department, Faculty of Science, Let $ - I ind. H where H are Hilbert spaces, then it follows Al-Azhar University, Naser City, Cairo, Egypt. n ••+ « n " easily that $ is nuclear if and only if for every m there exists n > a. such {3,10,11] that the injection u : H •+• H is of the Hilbert-Schmidt type. nm m n 3. The infinite weighted tensor product of Hilbert spaces! The following Define the space $„ as the projective limit of the Hilbert spaces H in the 2 3 h 1Q construction of the space will be used further as shown in [5,6) . Let I > > ' ] {H.)._. be a sequence of Hilbert spaces H. , let e = Ce ).__ > Ce1€K.) be a fixed sequence of unit vectors of these spaces and let & = (i.)._, (S. > 0) be a fixed numerical sequence. The Hilbert space constructed below TeT will be called an infinite weighted tensor product Definition We shall say that the system of weights P has the property (H) if: i=l;e;6 1 00 x' T " for every T'fiT there exists T"ET: E P /P < » (l) of the spaces H. with the stabilizing sequence e and the weight 5 k=0 K k h. Recall that an operator C acting from a separable Hilbert space H and then ve can give the condition for the nuclearity of $ by; to a Hilbert space H is of the Hilbert-Schmidt (HS) type if for an orthonormal basis e ,e£,..., of the spaces H the series Theorem 1 The space $ is nuclear if and only if P has the property |C| = £ C e. Proof Let P be an arbitrary weight from P and H , be the corresponding converges. If H^ is contained in H,, , we say that the inclusion is quasi- Hilbert space. If P has the property H , then according to (l) there exists T" nuclear if the inclusion operator is of the Hilbert-Schmidt type. The norm a weight P €P such that |c| is called the Hilbert norm of the operator C .see [11. For the chain of the Hilbert space , see [1 ,12] • P /P T k'K kK k=0 In order to formulate our main problem we need to do the following: a) Let an orthonormal basis in a separable Hilbert space Let {(Pv ) ev'v ^e an orthonormal basis in the corresponding space Hj, HQ and let In T» for the weight P . If 0 , : H „ •* H , is the inclusion operator then T P = (P = (P.)™ : ...; PQ = 1; > 1 for every T" -1/2 °° T> T" k,TET} | (Pk | -r' k=0 +T' k=0 {2) be a system of weights. Then by every weight ve define the corresponding Hilhert space in the form: and,conversely,- from the last equality it can easily be shown that if * is nuclear, then P satisfies the property (s). 2 2 T r T= (u | = I |C|P V < -»(c)-,(c " EC™= + k=0 k k b) Now we consider H = H to bethe corresponding adjoint space of an antilinear functional on HQ , (e^l^.Q (be an orthonormal basis on it and *p to denote the adjoint of $„ . How 4' is defined as the inductive limit of r r , the Hirbert spaces K where H and * have the form: the spaces>[_T , vhere w. e , (w >" eC°| k k k k=0 and From the above we can prove the following. Lemma 1 *; = U H = {w = Z we. [wu),. _ec"l I |w < °» for TET -T k==0n k k k k=o (3) The adjoint spaces for K , <tp are >[,*_, respectively. every TET} , Thus we have the following chains of spaces Since tar the spaces l3T)TtT we find e^^VtsT , ||eo||+T = 1 and 1 for every T«=T. Then for every T = , where T = Tx Tx ... we can define the infinite tensor product 3"C = ® H. constructed ~by the stabilizing sequence e = (eQ,e ,...) as in [5,. 6 } . The proof of this lemma can easily be shown as in Eef, [1]( Chapt.l). Since Let J-Tj be the infinite tensor product of H constructed by the 111-II ill-IL . stabilizing sequence e = (e ,e_,...), and e = e ® e (§ ... be considered -p T as an orthonormal tasis in HQ , and e^ = {'e^g = (Fa ^-1/2 __ _ ,p v,-l/2 e 1 Oy a be an orthonormal basis on >T • We define the projective limit of the Hilbert spaces J-[ by the form At the end of this article we shall obtain the criterion for nuclearity of the infinite weighted tensor product of nuclear spaces. We have the following definition. Definition Then J-[ and t have tbe following form: The system of weights P satisfies the property N if for every T'eT , £ > 0 there exists T"EI such that < 1 + e . k=0 emd {u = j UaV Then we have the following theorem. Theorem £ The space nuclear If and only if P has the property N Since || eJ| =1 for every TeT we can define H T = & H for every Proof TET constructed by the stabilizing sequence e = (e ,e ,...) with basis 'e '); Let ", tfhi~h has the property S and :' - {l.)._ . be an arbitrary (P. Define the space as inductive limit for element, we can choose T" = {T.)._. such that -5- -6- a) The space z p i /p J- < i + — t i = 1,2,. Consider the Sobolev space W^CS ,dS(.t}) aa the completion of trigonometric k=0 k K - 2i iKT polynomials T (t) C, e ,n = 0,1,..., ty the norm The Hilbert norm for the inclusion operator O l ; H * H 1 L2(S ) T • T " 1 i i - EC, has the form 1 X*\ IT? T l T and define the locally convex linear topological space KCS ) = (I ^pCs ) |O i| = E P VP i ' m=0 fi k0 k k to k=0 k k with topology/be considered as the inductive topology of the Sobolev spaceJ[71 It is clear that K(B ) ia considered as a space of infinite differentiate functions on S Then ve have (o I < » , which gives the condition for nuelearity of 3> , vhere Ti p Definition + 0 , :J-f ii HTi is the inclusion operator. Consider the space K(T ) K(s ) to be reear^ei-as the Conversely, suppose that $_ is nuclear, and if T'£ T, e > 0, then we i = l-,e can find T" - (T.) such that the Hirbert norm of the inclusion operator infinite direct product of spaces constructed by the stabilizing sequence is convergent, i.e. } [71. On the other hand,let HQ = L2(S ), ek= e , k. = 0,1,2,..., and 111 , then 10 I ' -1 •• 0 as i P = E = {Pc , P? = (1 + |k|) } 1° k m=0 T! T1 I 1 i 2 and we can choose i- such that i > i~ , (o , ] - 1 •§ e , which is the condition be a set of countable weights. It is easy to see that P^ = 1 for every of nuclearity when i > i .
Recommended publications
  • Distinguished Property in Tensor Products and Weak* Dual Spaces
    axioms Article Distinguished Property in Tensor Products and Weak* Dual Spaces Salvador López-Alfonso 1 , Manuel López-Pellicer 2,* and Santiago Moll-López 3 1 Department of Architectural Constructions, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Emeritus and IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain 3 Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] 0 Abstract: A local convex space E is said to be distinguished if its strong dual Eb has the topology 0 0 0 0 b(E , (Eb) ), i.e., if Eb is barrelled. The distinguished property of the local convex space Cp(X) of real- valued functions on a Tychonoff space X, equipped with the pointwise topology on X, has recently aroused great interest among analysts and Cp-theorists, obtaining very interesting properties and nice characterizations. For instance, it has recently been obtained that a space Cp(X) is distinguished if and only if any function f 2 RX belongs to the pointwise closure of a pointwise bounded set in C(X). The extensively studied distinguished properties in the injective tensor products Cp(X) ⊗# E and in Cp(X, E) contrasts with the few distinguished properties of injective tensor products related to the dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual of Cp(X, E). To partially fill this gap, some distinguished properties in the injective tensor product space Lp(X) ⊗# E are presented and a characterization of the distinguished property of the weak* dual of Cp(X, E) for wide classes of spaces X and E is provided.
    [Show full text]
  • Embedding Nuclear Spaces in Products of an Arbitrary Banach Space
    proceedings of the american mathematical society Volume 34, Number 1, July 1972 EMBEDDING NUCLEAR SPACES IN PRODUCTS OF AN ARBITRARY BANACH SPACE STEPHEN A. SAXON Abstract. It is proved that if E is an arbitrary nuclear space and F is an arbitrary infinite-dimensional Banach space, then there exists a fundamental (basic) system V of balanced, convex neigh- borhoods of zero for E such that, for each Kin i*~, the normed space Ev is isomorphic to a subspace of F. The result for F=lv (1 ^/>^oo) was proved by A. Grothendieck. This paper is an outgrowth of an interest in varieties of topological vector spaces [2] stimulated by J. Diestel and S. Morris, and is in response to their most helpful discussions and questions. The main theorem, valid for arbitrary infinite-dimensional Banach spaces, was first proved by A. Grothendieck [3] (also, see [5, p. 101]) for the Banach spaces /„ (1 ^p^ co) and later by J. Diestel for the Banach space c0. Our demonstration relies on two profound results of T. Kömura and Y. Kömura [4] and C. Bessaga and A. Pelczyriski [1], respectively: (i) A locally convex space is nuclear if and only if it is isomorphic to a subspace of a product space (s)1, where / is an indexing set and (s) is the Fréchet space of all rapidly decreasing sequences. (ii) Every infinite-dimensional Banach space contains a closed infinite- dimensional subspace which has a Schauder basis.1 Recall that for a balanced, convex neighborhood V of zero in a locally convex space E, Ev is a normed space which is norm-isomorphic to (M,p\M), where/? is the gauge of V and M is a maximal linear subspace of £ on which/; is a norm; Ev is the completion of Ev.
    [Show full text]
  • P-Quasi-Λ-Nuclear Operators Between Locally Convex Spaces * ﺩ
    Al-Aqsa University Journal (Natural Sciences Series) , Vol.14, No.2, Pages 18-26, Jan. 2010 ISSN 2070-3155 p-Quasi-λ-Nuclear Operators Between Locally Convex Spaces * ﺩ. ﺯﻴﺎﺩ ﺼﺎﻓﻲ * ﺩ. ﺃﺤﻤﺩ ﺍﻻﺸﻘﺭ ﺍﻟﻤﻠﺨﺹ ﻓﻲ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﻗﻤﻨﺎ ﺒﺘﻌﻤﻴﻡ ﻤﻔﻬﻭﻡ ﺍﻟﻤﺅﺜﺭﺍﺕ 2- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ (λ⊆ l1) ﺇﻟﻰ p- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﻤﺤﺩﺒﺔ ﺍﻟﻤﺤﻠﻴﺔ ( ∞p >0, λ⊆ l)، ﻭﻜﺫﺍﻟﻙ ﺩﺭﺴﻨﺎ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺅﺜﺭﺍﺕ p- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ λ- ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ ﺸﺒﻪ-λ-ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺒﺭﻫﻨﺎ ﺃﻥ ﺘﺭﻜﻴﺏ ﻤﺅﺜﺭﻴﻥ ﺃﺤﺩﻫﻤﺎ p- ﺸﺒﻪ-λ- ﻨﻭﻭﻱ ﻴﻜﻭﻥ p - ﺸﺒﻪ-λ- ﻨﻭﻭﻱ . ABSTRACT In this paper we generalize the concept of 2-quasi-λ-nuclear operators between Normed spaces (λ⊆ l1) to p-quasi-λ-nuclear operators between locally convex spaces (p >0, λ⊆ l∞ ) and we study the relationship between p-quasi-λ-nuclear, nuclear operators, λ-nuclear, quasi-nuclear and quasi-λ- nuclear. Also we prove that the composition of two operators, one of them is a p-quasi-λ-nuclear, is again a p-quasi-λ-nuclear operator. * ﻗﺴﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ – ﻜﻠﻴﺔ ﺍﻟﻌﻠﻭﻡ- ﺠﺎﻤﻌﺔ ﺍﻷﻗﺼﻰ - ﻏﺯﺓ - ﻓﻠﺴﻁﻴﻥ. p-Quasi-λ-Nuclear Operators Between Locally… 1. Preliminary. By Shatanawi [5], the operator T from a normed space E into a normed space F is said to be 2-quasi-λ-nuclear if there is a sequence ()α n ∈ λ ( λ ⊆ l1 ) and a bounded sequence ()an in E ′ such that ∞ 12 ⎛⎞2 Tx≤〈〉∞∀∈⎜⎟∑ |α nn || x , a | < , x E. ⎝⎠n =1 In this paper, we generalize this definition to p-quasi-λ-nuclear operator between locally convex spaces where λ ⊆ l ∞ and p > 0 .
    [Show full text]
  • Functional Properties of Hörmander's Space of Distributions Having A
    Functional properties of Hörmander’s space of distributions having a specified wavefront set Yoann Dabrowski, Christian Brouder To cite this version: Yoann Dabrowski, Christian Brouder. Functional properties of Hörmander’s space of distributions having a specified wavefront set. 2014. hal-00850192v2 HAL Id: hal-00850192 https://hal.archives-ouvertes.fr/hal-00850192v2 Preprint submitted on 3 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Communications in Mathematical Physics manuscript No. (will be inserted by the editor) Functional properties of H¨ormander’s space of distributions having a specified wavefront set Yoann Dabrowski1, Christian Brouder2 1 Institut Camille Jordan UMR 5208, Universit´ede Lyon, Universit´eLyon 1, 43 bd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France 2 Institut de Min´eralogie, de Physique des Mat´eriaux et de Cosmochimie, Sorbonne Univer- sit´es, UMR CNRS 7590, UPMC Univ. Paris 06, Mus´eum National d’Histoire Naturelle, IRD UMR 206, 4 place Jussieu, F-75005 Paris, France. Received: date / Accepted: date ′ Abstract: The space Γ of distributions having their wavefront sets in a closed cone Γ has become importantD in physics because of its role in the formulation of quantum field theory in curved spacetime.
    [Show full text]
  • NUCLEAR and GP-NUCLEAR GROUPS 1. Introduction the Theory
    NUCLEAR AND GP-NUCLEAR GROUPS XABIER DOM´INGUEZ AND VAJA TARIELADZE Dedicated to Professor S. Cs´asz´aron the ocassion of his 75th. birthday Abstract. We define GP-nuclear groups as topological Abelian groups for which the groups of summable and absolutely summable sequences are the same algebraically and topologically. It is shown that in the metrizable case only the algebraic coincidence of the mentioned groups is needed for GP-nuclearity. Some permanence properties of the class of GP-nuclear groups are obtained. Our final result asserts that nuclear groups in the sense of Banaszczyk are GP-nuclear. The validity of the converse assertion remains open. 1. Introduction The theory of nuclear locally convex spaces is now an important part of Functional Analysis. The notion of a nuclear space has been introduced by Grothendieck in the framework of his theory of topological tensor products. Now the following definition of nuclear spaces is commonly accepted (see [15, 17, 19]): Definition 1.1. A locally convex space E is said to be nuclear if for any absolutely convex neighborhood of zero U in E there exists another absolutely convex neighborhood of zero V ⊂ U such that the canonical mapping of EV into EU is nuclear. Here EU denotes the Banach space associated with U. Several characterizations of nuclear spaces are known. In the definition, instead of the ideal of nuclear operators many others can be used (see [15, p. 482]). Grothendieck es- tablished already the following important internal criterion: a metrizable locally convex space is nuclear if and only if every summable sequence in it is also absolutely summable ([17, p.
    [Show full text]
  • Nuclear Spaces and Kernel Theorem I
    (July 19, 2011) Hilbert-Schmidt operators, nuclear spaces, kernel theorem I Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ 1. Hilbert-Schmidt operators 2. Simplest nuclear Fr´echet spaces 3. Strong dual topologies and colimits 4. Schwartz' kernel theorem for Sobolev spaces 5. Appendix: joint continuity of bilinear maps on Fr´echet spaces Hilbert-Schmidt operators on Hilbert spaces are especially simple compact operators. Countable projective limits of Hilbert spaces with transition maps Hilbert-Schmidt constitute the simplest class of nuclear spaces: well-behaved with respect to tensor products and other natural constructs. The main application in mind is proof of Schwartz' Kernel Theorem in the important example of L2 Sobolev spaces. 1. Hilbert-Schmidt operators [1.1] Prototype: integral operators For a continuous function Q(a; b) on [a; b] × [a; b], define T : L2[a; b] ! L2[a; b] by Z b T f(y) = Q(x; y) f(x) dx a The function Q is the (integral) kernel of T . [1] Approximating Q by finite linear combinations of 0-or-1- valued functions shows that T is a uniform operator norm limit of finite-rank operators, so is compact. In fact, T falls into an even-nicer sub-class of compact operators, the Hilbert-Schmidt operators, as in the following. [1.2] Hilbert-Schmidt norm on V ⊗alg W In the category of Hilbert spaces and continuous linear maps, demonstrably there is no tensor product in the categorical sense. [2] Not claiming anything about genuine tensor products in any category of topological vector spaces, the algebraic tensor product X ⊗alg Y of two Hilbert spaces has a hermitian inner product h; iHS determined by 0 0 0 0 hx ⊗ y; x ⊗ y iHS = hx; x i hy; y i Let X ⊗ Y be the completion with respect to the corresponding norm jvj = hv; vi1=2 HS HS HS X ⊗HS Y = j · jHS -completion of X ⊗alg Y This completion is a Hilbert space.
    [Show full text]
  • Random Linear Functionals
    RANDOM LINEAR FUNCTIONALS BY R. M. DUDLEYS) Let S be a real linear space (=vector space). Let Sa be the linear space of all linear functionals on S (not just continuous ones even if S is topological). Let 86{Sa, S) or @{S) denote the smallest a-algebra of subsets of Sa such that the evaluation x -> x(s) is measurable for each s e S. We define a random linear functional (r.l.f.) over S as a probability measure P on &(S), or more formally as the pair (Sa, P). In the cases we consider, S is generally infinite-dimensional, and in some ways Sa is too large for convenient handling. Various alternate characterizations of r.l.f.'s are useful and will be discussed in §1 below. If 7 is a topological linear space let 7" be the topological dual space of all con- tinuous linear functions on T. If 7" = S, then a random linear functional over S defines a " weak distribution " on 7 in the sense of I. E. Segal [23]. See the discussion of "semimeasures" in §1 below for the relevant construction. A central question about an r.l.f. (Sa, P), supposing S is a topological linear space, is whether P gives outer measure 1 to S'. Then we call the r.l.f. canonical, and as is well known P can be restricted to S' suitably (cf. 2.3 below). For simplicity, suppose that for each s e S, j x(s)2 dP(x) <oo. Let C(s)(x) = x(s).
    [Show full text]
  • 181. on Nuclear Spaces with Fundamental System O F Bounded Sets
    No. 8] Proc. Japan Acad., 44 (1968) 807 181. On Nuclear Spaces with Fundamental System o f Bounded Sets. II By Shunsuke FUNAKOs1 (Comm. by Kinjiro KuNUGI, M. J. A., Oct. 12, 1968) A locally convex vector space with a countable fundamental system of bounded sets has already been developed in several bibliog- raphies. Barrelled spaces and quasi-barrelled spaces with a count- able fundamental system of compact sets has been studied by J. Dieudonne [2] and by M. Mahowald and G. Gould [7] respectively. We considered, the open mapring and closed graph theorems on a nuclear dualmetric space in the previous paper [4]. Let E be a nonmed space then E is a nuclear space if and only if it is finite dimentional. It is also known that a nonmed space can only be a Montel (i.e., barrelled and perfect) space if it is finite dimen- sional. In this paper, we prove a nuclear dualmetric space which is quasi-complete is Montel space, and using this result, we consider analogous theorem to M. Mahowald and G. Gould [7], in nuclear space. For nuclear spaces and its related notion, see A. Pietsch [8] and S. Funakosi [4]. Most of the definitions and notations of the locally convex vector spaces are taken' from N. Bourbaki [1] and T. Husain [5]. Definition. Let E be a locally convex space and E' its dual. (1) I f only all countable strong bounded subset o f E' are equi- continuous, then E is called the oW-quasi-barrelled. (2) Let E be a a-quasi-barrelled space, if there exists a countable fundamental system o f bounded subset in E, then E is called the dual- metric space.
    [Show full text]
  • Nuclear Spaces of Maximal Diametral Dimension Compositio Mathematica, Tome 26, No 3 (1973), P
    COMPOSITIO MATHEMATICA CHRISTIAN FENSKE EBERHARD SCHOCK Nuclear spaces of maximal diametral dimension Compositio Mathematica, tome 26, no 3 (1973), p. 303-308 <http://www.numdam.org/item?id=CM_1973__26_3_303_0> © Foundation Compositio Mathematica, 1973, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 26, Fasc. 3, 1973, pag. 303-308 Noordhoff International Publishing Printed in the Netherlands NUCLEAR SPACES OF MAXIMAL DIAMETRAL DIMENSION by Christian Fenske and Eberhard Schock The diametral dimension 0394(E) of a locally convex vector space E is known to be a measure for the nuclearity of E. Therefore it is of in- terest to characterize the class S2 of those locally convex vector spaces, the diametral dimension of which is maximal. We show that the class S2 has the same stability properties as the class X of all nuclear spaces, and characterize the members of Q, that are contained in the smallest stability class, by a property of their bornology. At first let us define what we mean by a stability class: DEFINITION. (a) A stability class is a class of locally convex vector spaces, which is closed under the operations of forming (Si) completions (S2) subspaces (S3) quotients by closed subspaces (S4) arbitrary products (SS) countable direct sums (S6) tensor products (S7) isomorphic images.
    [Show full text]
  • Arxiv:1612.01421V1 [Math.OA] 5 Dec 2016
    NUCLEARITY PROPERTIES AND C∗-ENVELOPES OF OPERATOR SYSTEM INDUCTIVE LIMITS PREETI LUTHRA AND AJAY KUMAR Abstract. We study the relationship between C∗-envelopes and inductive limit of operator systems. Various operator system nuclearity properties of inductive limit for a sequence of operator systems are also discussed. 1. Introduction In last few years, the development of the theory of operator systems has seen a fair amount of attention. All the important notions from the theory of C∗-algebras including exactness, nuclearity, weak expectation property and lifting properties have been explicitly defined in the category of operator systems. Associated to every representation φ of an operator system S into B(H), for some Hilbert Space H, there exist a C∗-cover the C∗-algebra C∗(φ(S)) ⊂ B(H). The minimal C∗-cover among all such representation is known as the C∗-envelope of S. It is thus quite natural to ask which C∗-algebraic properties of the C∗-envelopes are carried over to the generating operator systems in terms of their definitions in the operator system category, and to what extent. Some attempts done in this direction can be found in [5, 12]. It is well known (see [2]) that for the category of C∗-algebras, inductive limit pre- serves many intrinsic properties, viz., exactness, nuclearity, simplicity etc. The analysis of inductive limit of ascending sequences of finite dimensional C∗-algebras, known as approximately finite dimensional (AF) C∗-algebras, has played an im- portant role in theory of operator algebras. Existence of inductive limits in the category of operator systems has been shown in [10].
    [Show full text]
  • Bilinear Forms and Nuclearity
    Czechoslovak Mathematical Journal Hans Jarchow; Kamil John Bilinear forms and nuclearity Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 2, 367–373 Persistent URL: http://dml.cz/dmlcz/128458 Terms of use: © Institute of Mathematics AS CR, 1994 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 44 (119) 1994, Praha BILINEAR FORMS AND NUCLEARITY H. JARCHOW, Zurich, and KAMIL JOHN, Praha (Received October 21, 1994) INTRODUCTION Back in 1965, A. Pietsch asked if a locally convex Hausdorff space (lcs) E must be nuclear whenever it has the property that every continuous bilinear form on E x E is nuclear (cf. [10], 7.4.5). The question remained open, even within the framework of Banach spaces where it translates to what is known as the "bounded non-nuclear operator problem": is a Banach space X necessarily finite-dimensional when all operators from X to its dual X* are nuclear? The related "compact non-nuclear operator problem" has a negative solution. In 1983, G. Pisier [12] constructed (separable, infinite-dimensional) Banach spaces P which, among others, have the property that every approximable operator P -> P is nuclear. In 1990, K. John [8] observed that this is also true for approximable operators p(m) -» p(n) for any choice of positive integers m and n; here p(m) is the ra-th dual of P.
    [Show full text]
  • Examples of Summing, Integral and Nuclear Operators on the Space C([0, 1],X)With Values in C0
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J. Math. Anal. Appl. 331 (2007) 850–865 www.elsevier.com/locate/jmaa Examples of summing, integral and nuclear operators on the space C([0, 1],X)with values in c0 Dumitru Popa Department of Mathematics, University of Constanta, Bd. Mamaia 124, 8700 Constanta, Romania Received 16 January 2006 Available online 16 October 2006 Submitted by J. Diestel Abstract We give necessary and sufficient conditions that some operators on the space C([0, 1],X) with values in c0 be as in the title. Related questions are investigated. © 2006 Elsevier Inc. All rights reserved. Keywords: Banach spaces of continuous functions; Tensor products; Operator ideals; p-Summing operators 1. Introduction Let Ω be a compact Hausdorff space, let X be a Banach space, and let C(Ω,X) stand for the Banach space of continuous X-valued functions on Ω under the uniform norm and C(Ω) when X is the scalar field. It is well known that if Y is a Banach space, then any bounded linear operator U : C(Ω,X) → Y has a finitely additive vector measure G : Σ → L(X, Y ∗∗), where Σ is the σ -field of Borel subsets of Ω, such that ∗ ∗ ∗ y U(f)= fdGy∗ ,f∈ C(Ω,X), y ∈ Y . Ω The measure G is called the representing measure of U. For details, see [2, p. 217], [3, Theo- rem 2.2], [7, p. 182]. E-mail address: [email protected]. 0022-247X/$ – see front matter © 2006 Elsevier Inc.
    [Show full text]