10. Routes of Drug Delivery.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Routes of Drug Administration
Routes of Drug Administration Edited by A. T. Florence PhD, DSc, FRSC, FRSE, FRPharmS The School of Pharmacy, University of London, London, UK and E. G. Salole BSc, PhD, MRPharmS Department of Pharmacy, University of Strathclyde, Glasgow, UK WRIGHT London Boston Singapore Sydney Toronto Wellington Wright is an imprint of Butterworth Scientific @l PART OF REED INTERNATIONAL RL.C. All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 33-34 Alfred Place, London, England WCIE 7DP. Applications for the copyright owner's written permission to reproduce any part of this publication should be addressed to the Publishers. Warning: The doing of an unauthorised act in relation to a copyrigbht work may result in both a civil claim for damages and criminal prosecution. This book is sold subject to the Standard Conditions of Sale of Net Books and may not be re-sold in the UK below the net price given by the Publishers in their current price list. First published 1990 © Butterworth & Co. (Publishers) Ltd, 1990 British Library Cataloguing in Publication Data Routes of drug administration. 1. Medicine. Drug therapy I. Florence, A. T. (Alexander Taylor) II. Salole, E.G. (Eugene G) III. -
Orally Inhaled & Nasal Drug Products
ORALLY INHALED & NASAL DRUG PRODUCTS: INNOVATIONS FROM MAJOR DELIVERY SYSTEM DEVELOPERS www.ondrugdelivery.com 00349_GF_OnDrugDelivery349_GF_OnDrugDelivery PulmonaryPulmonary NasalNasal NovemberNovember 2010.indd2010.indd 1 330/11/100/11/10 111:32:331:32:33 “Orally Inhaled & Nasal Drug Products: Innovations from Major Delivery CONTENTS System Developers” This edition is one in the ONdrugDelivery series of pub- Innovation in Drug Delivery by Inhalation lications from Frederick Furness Publishing. Each issue focuses on a specific topic within the field of drug deliv- Andrea Leone-Bay, Vice-President, Pharmaceutical ery, and is supported by industry leaders in that field. Development, Dr Robert Baughman, Vice-President, Clinical Pharmacology & Bioanalytics, Mr Chad EDITORIAL CALENDAR 2011: Smutney, Senior Director, Device Technology, February: Prefilled Syringes Mr Joseph Kocinsky, Senior Vice-President, March: Oral Drug Delivery & Advanced Excipients Pharmaceutical Technology Development April: Pulmonary & Nasal Drug Delivery (OINDP) MannKind Corporation 4-7 May: Injectable Drug Delivery (Devices Focus) June: Injectable Drug Delivery (Formulations Focus) Current Innovations in Dry Powder Inhalers September: Prefilled Syringes Richard Sitz, Technical Manager, DPI Technology October: Oral Drug Delivery Platform Leader November: Pulmonary & Nasal Drug Delivery (OINDP) 3M Drug Delivery Systems 10-12 December: Delivering Biologics (Proteins, Peptides & Nucleotides) Pulmonary Delivery & Dry-Powder Inhalers: SUBSCRIPTIONS: Advances in Hard-Capsule -
An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: a Review
Muthadi Radhika Reddy /J. Pharm. Sci. & Res. Vol. 12(7), 2020, 925-940 An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: A Review Muthadi Radhika Reddy1* 1School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India and Department of Pharmacy, Gandhi Institute of Technology and Management University, Vizag, Andhra Pradesh, India INTRODUCTION 2. Useful in situations where rapid onset of action Fast dissolving drug delivery systems were first developed required such as in motion sickness, allergic attack, in the late 1970s as an alternative to conventional dosage coughing or asthma forms. These systems consist of solid dosage forms that 3. Has wide range of applications in pharmaceuticals, Rx disintegrate and dissolve quickly in the oral cavity without Prescriptions and OTC medications for treating pain, the need of water [1]. Fast dissolving drug delivery cough/cold, gastro-esophageal reflux disease,erectile systems include orally disintegrating tablets (ODTs) and dysfunction, sleep disorders, dietary supplements, etc oral thin films (OTFs). The Centre for Drug Evaluation [4] and Research (CDER) defines ODTs as,“a solid dosage 4. No water is required for the administration and hence form containing medicinal substances which disintegrates suitable during travelling rapidly, usually within a matter of seconds, when placed 5. Some drugs are absorbed from the mouth, pharynx upon the tongue” [2]. USFDA defines OTFs as, “a thin, and esophagus as the saliva passes down into the flexible, non-friable polymeric film strip containing one or stomach, enhancing bioavailability of drugs more dispersed active pharmaceutical ingredients which is 6. May offer improved bioavailability for poorly water intended to be placed on the tongue for rapid soluble drugs by offering large surface area as it disintegration or dissolution in the saliva prior to disintegrates and dissolves rapidly swallowing for delivery into the gastrointestinal tract” [3]. -
An Overview On: Sublingual Route for Systemic Drug Delivery
International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 __________________________________________Review Article An Overview on: Sublingual Route for Systemic Drug Delivery K. Patel Nibha1 and SS. Pancholi2* 1Department of Pharmaceutics, BITS Institute of Pharmacy, Gujarat Technological university, Varnama, Vadodara, Gujarat, India 2BITS Institute of Pharmacy, Gujarat Technological University, Varnama, Vadodara, Gujarat, India. __________________________________________________________________________________ ABSTRACT Oral mucosal drug delivery is an alternative and promising method of systemic drug delivery which offers several advantages. Sublingual literally meaning is ''under the tongue'', administrating substance via mouth in such a way that the substance is rapidly absorbed via blood vessels under tongue. Sublingual route offers advantages such as bypasses hepatic first pass metabolic process which gives better bioavailability, rapid onset of action, patient compliance , self-medicated. Dysphagia (difficulty in swallowing) is common among in all ages of people and more in pediatric, geriatric, psychiatric patients. In terms of permeability, sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Different techniques are used to formulate the sublingual dosage forms. Sublingual drug administration is applied in field of cardiovascular drugs, steroids, enzymes and some barbiturates. This review highlights advantages, disadvantages, different sublingual formulation such as tablets and films, evaluation. Key Words: Sublingual delivery, techniques, improved bioavailability, evaluation. INTRODUCTION and direct access to systemic circulation, the oral Drugs have been applied to the mucosa for topical mucosal route is suitable for drugs, which are application for many years. However, recently susceptible to acid hydrolysis in the stomach or there has been interest in exploiting the oral cavity which are extensively metabolized in the liver. -
Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
pharmaceutics Review Liposome-Based Drug Delivery Systems in Cancer Immunotherapy Zili Gu 1 , Candido G. Da Silva 1 , Koen van der Maaden 2,3, Ferry Ossendorp 2 and Luis J. Cruz 1,* 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany Received: 1 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Keywords: liposome; drug delivery; cancer immunotherapy; immunomodulation 1. The Potential of Immunotherapy for the Treatment of Cancer Cancer immunotherapy has been widely explored because of its durable and robust effects [1]. -
Intra-Luminal Focused Ultrasound for Augmentation of Gastrointestinal Drug Delivery
Editorial Page 1 of 2 Intra-luminal focused ultrasound for augmentation of gastrointestinal drug delivery Ezekiel Maloney1, Joo Ha Hwang2 1Department of Radiology, 2Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA Correspondence to: Joo Ha Hwang, MD, PhD. Division of Gastroenterology, Department of Medicine, University of Washington, Box 359773, 325 Ninth Avenue, Seattle, WA 98104, USA. Email: [email protected]. Provenance: This is a Guest Editorial commissioned by Section Editor Hui Kong, MD, PhD (Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China). Comment on: Schoellhammer CM, Schroeder A, Maa R, et al. Ultrasound-mediated gastrointestinal drug delivery. Sci Transl Med 2015;7:310ra168. Submitted Feb 01, 2017. Accepted for publication Feb 06, 2017. doi: 10.21037/atm.2017.03.42 View this article at: http://dx.doi.org/10.21037/atm.2017.03.42 The recent article by Schoellhammer et al., “Ultrasound- intensity ultrasound frequencies followed by quantification mediated gastrointestinal drug delivery” primarily of delivery of permeants (e.g., glucose, dextran, insulin). addresses practical limitations in drug delivery for medical Treated tissues showed enhanced transport. Similar management of inflammatory bowel disease (IBD), and findings were demonstrated in small and large bowel tissue presents pre-clinical data demonstrating that intra- for radiolabeled mesalamine and hydrocortisone. With 1 luminal, sub-ablative focused ultrasound (FUS), delivered minute of ultrasound treatment time, 3–5-fold improved via a trans-rectal transducer, can overcome some of these drug delivery was observed versus control. Additional limitations (1). The clinical application and benefit of such a ex vivo experiments utilizing variable FUS protocols to device is clear. -
Chapter 1 Controlling Drug Delivery
chapter 1 Controlling drug delivery Overview In this chapter we will: & differentiate drug delivery systems according to their physical state & differentiate drug delivery systems according to their route of administration & differentiate drug delivery systems according to their type of drug release & discuss drug transport across epithelial barriers. Introduction KeyPoints & Continued developments in Pharmacotherapy can be defined as the treatment chemistry, molecular biology and prevention of illness and disease by means of and genomics support the drugs of chemical or biological origin. It ranks discovery and developments among the most important methods of medical of new drugs and new drug treatment, together with surgery, physical targets. & treatment, radiation and psychotherapy. There The drug delivery system are many success stories concerning the use of employed can control the pharmacological action of a drugs and vaccines in the treatment, prevention drug, influencing its and in some cases even eradication of diseases pharmacokinetic and (e.g. smallpox, which is currently the only subsequent therapeutic human infectious disease completely profile. eradicated). Although it is almost impossible to estimate the exact extent of the impact of pharmacotherapy on human health, there can be no doubt that pharmacotherapy, together with improved sanitation, better diet and better housing, has improved people’s health, life expectancy and quality of life. Tip Unprecedented developments in genomics Combinatorial chemistry is a way to and molecular biology today offer a plethora of build a variety of structurally related new drug targets. The use of modern chemical drug compounds rapidly and synthetic methods (such as combinatorial systematically. These are assembled chemistry) enables the syntheses of a large from a range of molecular entities number of new drug candidates in shorter times which are put together in different ‘ ’ than ever before. -
Domoso® Solution
NADA 32-168, Approved by FDA DMSO instilled into the urinary bladder of intact, anesthetized dogs through which an these parameters. DMSO fails to show analgesic or anti-inflammatory activity in certain of In a study designed to evaluate the effects of DOMOSO (dimethyl sulfoxide) Solution at a total enhancement of absorption was demonstrated25. Utilizing a similar technique the transport of these situations, particularly when used by the systemic route or when administered topically daily dose of 100-300 mL administered for a total period of 90 days, no essential or clinically physiologically active insulin across the intact bladder mucosa was demonstrated. Results preceded by an irritant substance. In clinical studies in the horse, it was noted that when meaningful ophthalmological effects were seen in the horse. were judged on a decrease in blood sugar levels over that of controls26. iodine, liniments or other strong irritants were present on the skin from previous therapy and There were no significant variations in glucose, sodium, potassium, SGOT or SGPT DMSO applied, a temporary but marked local reaction would occur. This was due to the In vivo and in vitro methods demonstrated that DMSO enhanced human percutaneous measurements. There were a few fluctuations in hematologic values but no changes appear ability of DMSO to carry these substances into the underlying skin tissues where their irritant ® absorption of various compounds including steroids, vasoconstrictors, antiperspirants and to be drug-related or of significance. DOMOSO SOLUTION actions could be displayed. When DMSO was used clinically, it was applied topically to the dyes, as well as an anthelmintic (thiabendazole) and a skin antiseptic (hexachlorophene)27,28,29,60,61,62. -
Review Article DUOCAP: the CAPSULE in CAPSULE TECHNOLOGY Kanabar Vishvesh B*, Doshi Sumit M, Patel Vipul P Department of Pharmaceutics, School of Pharmacy, R.K
Kanabar Vishvesh B et al. Int. Res. J. Pharm. 2015, 6 (2) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Review Article DUOCAP: THE CAPSULE IN CAPSULE TECHNOLOGY Kanabar Vishvesh B*, Doshi Sumit M, Patel Vipul P Department of Pharmaceutics, School of Pharmacy, R.K. University, Kasturbadham, Rajkot-Bhavnagar Highway, Rajkot, Gujarat, India *Corresponding Author Email: [email protected] Article Received on: 11/12/14 Revised on: 13/01/15 Approved for publication: 18/02/15 DOI: 10.7897/2230-8407.06220 ABSTRACT In this article, the study of never technology of capsule in solid dosage form among all in pharmaceutical dosage forms. This review includes newer trends related to capsule shell, capsule fill material, capsule sealing technique and different capsule systems to achieve modified drug release, encapsulation of various kind of materials and for modified application like mapping of the drug for clinical evaluation Either this done by capsule shell or by dosage filling in capsule dosage forms. This article mostly focuses on advancement of capsule in capsule technology. In this the study is about to reduce the frequency of dosing or to increase effectiveness of the drug by localization at the site of action, reducing the dose required, or providing uniform drug delivery. Keywords: Capsules, Chew caps, Duo caps, Hard Gelatin Capsule, Soft Gelatin Capsule, Vegetarian capsules. INTRODUCTION Since the introduction of Soft Capsule Making Machine in the 1970s, formulations have continually become more popular with The word ‘Capsule’ derived from the Latin word “capsula”, which rapid developments in recent years. This could be illustrated by means a small box or container. -
Efficacy of Systemic Administration of Riboflavin on a Rabbit Model
www.nature.com/scientificreports OPEN Efcacy of systemic administration of ribofavin on a rabbit model of corneal alkali burn Maksym Żuk1*, Ekaterina Lobashova2, Olga Żuk3 & Sławomir Wierzba3 Changes in the barrier mechanisms in the eye should determine the rational route for the administration and dosage of each drug in the treatment of traumatic injuries and other pathologies. The aim of this study was to examine the efcacy of intra-arterial delivery of 14C-ribofavin (as an “indicator”) and compare it with intravenous and intramuscular administration in an animal model of chemical eye burn. 14C-ribofavin (14C-I) was administered by intra-arterial (carotid artery), intravenous (femoral vein) and intramuscular (femoral muscle) routes. The total radioactivity was determined over 2 h in the plasma and structures of the rabbit’s eyes using a scintillation counter. The results of the study show that intravascular administration of 14C-I gives signifcantly higher concentrations of total radioactivity in the blood and is accompanied by a signifcant increase in the permeability of the blood- barrier and barrier in eyes sufering from burns. The highest concentration in the plasma and aqueous humour of the anterior chamber of the eye was observed during the frst hour with the intra-arterial route of administration of 14C-I in either burnt and unburnt eyes. The distribution of total radioactivity in the structures of the eye over the 2 h of the experiment showed a higher level of the drug under intra-arterial administered in the uveal regions, namely: the iris, ciliary body, choroid, retina and also the sclera and cornea. -
Pulmonary Delivery of Biological Drugs
pharmaceutics Review Pulmonary Delivery of Biological Drugs Wanling Liang 1,*, Harry W. Pan 1 , Driton Vllasaliu 2 and Jenny K. W. Lam 1 1 Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; [email protected] (H.W.P.); [email protected] (J.K.W.L.) 2 School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK; [email protected] * Correspondence: [email protected]; Tel.: +852-3917-9024 Received: 15 September 2020; Accepted: 20 October 2020; Published: 26 October 2020 Abstract: In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. -
Review On: Sublingual Route for Systemic Drug Delivery
IAJPS 2018, 05 (01), 453-462 Himanshi Rathaur and G.Gnanarajan ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.1161209 Available online at: http://www.iajps.com Review Article REVIEW ON: SUBLINGUAL ROUTE FOR SYSTEMIC DRUG DELIVERY Himanshi Rathaur*1and G.Gnanarajan2 *1Shri Guru Ram Rai Institute of Technology and Sciences, Department of Pharmaceutics, Uttarakhand Technical University, Dehradun,248001, Uttarakhand, India 2Shri Guru Ram Rai Institute of Technology and Sciences, Department of Pharmaceutics, Faculty of Pharmacy, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India. Abstract: Delivery of drug in the oral cavity through the oral mucosa is examined to be a promising alternative to the oral route. Sublingual means “under the tongue” which rapidly absorb the drug through the oral mucosa and enter into the systemic circulation. This route provides various advantages such as quick onset of action, patient compliance, hepatic first pass metabolism and increase bioavailability. Dysphagia is a common problem in pediatric, geriatric and psychiatric patients. In terms of permeability sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Now a days most of the population need effective, faster and better relief within a short period of time. So, this route is the most appropriate route of administration and it rapidly dissolves in saliva. Many drugs like cardiovascular drugs, steroids,