Introduction to Reducing HST Data

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Reducing HST Data Version 6.0 March, 2006 Introduction to Reducing HST Data Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the Web site: • URL: http://www.stsci.edu. Revision History Version Date Editors 1.0 February 1994 Stefi Baum 2.0 December 1995 Claus Leitherer 3.0, Vol.. I October 1997 Mark Voit 3.0, Vol.. II October 1997 Tony Keyes 3.1 March 1998 Tony Keyes 4.0 January 2002 Bahram Mobasher, Chief Editor, HST Data Handbook Michael Corbin, Jin-chung Hsu, Editors, HST Introduction 5.0 July 2004 Diane Karakla and Jennifer Mack, Editors, HST Introduction. Susan Rose, Technical Editor, HST Introduction. 6.0 March 2006 Diane Karakla, Editor, HST Introduction. Susan Rose, Techni- cal Editor, HST Introduction. Contributors to V 6.0: Inga Kamp, Dorothy Fraquelli, Al Holm, Brian McLean. Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Preface .................................................................................... vii Chapter 1: Getting HST Data............................. 1-1 1.1 Archive Overview ....................................................... 1-2 1.1.1 Archive Registration................................................. 1-3 1.1.2 Archive Documentation and Help ............................ 1-4 1.2 Getting Data with StarView...................................... 1-4 1.2.1 Downloading and Setting Up StarView.................... 1-4 1.2.2 Simple Use of StarView........................................... 1-5 1.2.3 Marking and Retrieving Data with StarView ............ 1-9 1.2.4 Using StarView to Retrieve Calibration Files and Proposal Information and for Duplication Checking ... 1-10 1.2.5 Advanced Features of StarView ............................ 1-12 1.2.6 StarView and the Visual Target Tuner................... 1-14 1.2.7 Quick Proprietary Data Retrieval with StarView .... 1-14 1.3 Getting Data with the World Wide Web .............. 1-15 1.3.1 WFPC2 Associations............................................. 1-17 1.3.2 High Level Science Products................................. 1-19 1.4 Reading HST Data Disks ....................................... 1-20 Chapter 2: HST File Formats............................. 2-1 2.1 FITS File Format ........................................................ 2-2 2.1.1 Working with FITS Image Extensions...................... 2-3 2.1.2 Working with FITS Table Extensions....................... 2-8 2.2 GEIS File Format...................................................... 2-11 2.2.1 Converting FITS to GEIS....................................... 2-13 2.2.2 GEIS Data Groups................................................. 2-13 2.2.3 Working with GEIS Files........................................ 2-15 2.2.4 The “waiver” FITS Format...................................... 2-17 iii iv Table of Contents Chapter 3: Analyzing HST Data ...................... 3-1 3.1 Alternative Means of Accessing HST Data.......... 3-2 3.1.1 Interactive Data Language (IDL) ............................. 3-2 3.1.2 Python...................................................................... 3-2 3.1.3 Fortran and C........................................................... 3-3 3.1.4 Java ......................................................................... 3-3 3.1.5 PyRAF ..................................................................... 3-3 3.2 Navigating STSDAS .................................................. 3-4 3.2.1 STSDAS Structure................................................... 3-4 3.2.2 Packages of General Interest .................................. 3-6 3.3 Displaying HST Images ............................................ 3-7 3.3.1 The Display Task..................................................... 3-7 3.3.2 Working with Image Sections ................................ 3-10 3.4 Analyzing HST Images ........................................... 3-11 3.4.1 Basic Astrometry.................................................... 3-12 3.4.2 Examining and Manipulating Image Data.............. 3-14 3.4.3 Working with STIS, ACS, and NICMOS Imsets..... 3-16 3.4.4 Photometry ............................................................ 3-19 3.4.5 Combining Dithered HST Datasets with MultiDrizzle ......................................................... 3-22 3.5 Displaying HST Spectra ......................................... 3-24 3.5.1 Specview ............................................................... 3-24 3.5.2 STIS Spectra ......................................................... 3-25 3.5.3 FOS and GHRS Spectra........................................ 3-26 3.5.4 Producing Hardcopy .............................................. 3-27 3.6 Analyzing HST Spectra........................................... 3-29 3.6.1 Preparing STIS Spectra for Analysis in IRAF/STSDAS or Pyraf .......................................... 3-29 3.6.2 Preparing FOS and GHRS Data............................ 3-32 3.6.3 Photometry ............................................................ 3-35 3.6.4 General Tasks for Spectra..................................... 3-35 3.6.5 STSDAS Fitting Package ...................................... 3-38 3.6.6 Specfit.................................................................... 3-41 3.7 References ................................................................ 3-41 3.7.1 Available from STScI ............................................. 3-41 3.7.2 Available from NOAO ............................................ 3-42 3.7.3 Other References Cited in This Chapter ............... 3-42 Table of Contents v Appendix A: IRAF Primer .....................................A-1 A.1 Initiating IRAF ..............................................................A-2 A.2 IRAF Basics..................................................................A-4 A.3 Getting IRAF and STSDAS ....................................A-14 Appendix B: HST File Names ...........................B-1 B.1 Rootnames ...................................................................B-3 B.2 Suffixes of Files Common to All Instruments .......B-4 B.3 Associations .................................................................B-5 Appendix C: Observation Logs ......................C-1 C.1 Observation Log Files................................................C-1 C.2 Retrieving Observation Logs .................................C-11 C.3 Using Observation Logs..........................................C-12 Index .................................................................................Index-1 vi Table of Contents Preface The HST Data Handbook is comprised of three separate sections which are merged together to form a single document: • Part I is a general introduction which describes the process of retrieving and reducing Hubble Space Telescope (HST) data. • Part II is an instrument-specific document which describes the reduction procedures, calibrations, and sources of error specific to each active HST instrument. • Part III is a general set of appendices which includes an IRAF primer, a description of HST file names, and a summary of the obser- vation log files. Use of HST data necessarily involves using software to retrieve, analyze, and view it. With regard to analysis and visualization, there are many different tools and packages available. It would be impractical for a handbook to show how to do this for all available software. Since much of the software developed by STScI for calibrating, analyzing, and visualizing HST data has been based on the IRAF system, the focus of this handbook will be on use of IRAF, STSDAS, and TABLES for doing so. Chapter 3 will briefly mention other software tools for accessing HST data and where to get more information about these tools. PyRAF is a new command language (CL) for IRAF and, as such, allows the use of almost all IRAF tools. It is briefly discussed in Chapter 3, but for the most part, the IRAF examples given will work exactly the same in PyRAF. The specifics of the data produced by each of the four active instruments, FGS, WFPC2, NICMOS, and ACS, are described in separate versions of Part II. A fifth version exits for STIS which recently failed in 2004. The general information in Parts I and III, referred to as ‘the introductory chapters’, are tacked onto the beginning and end of each instrument-specific part. We recommend a careful reading of the introductory chapters before proceeding to the instrument-specific section and before starting to work on your HST data. The present introductory chapters are based on information available as of January 2006. Several changes in the HST Data Archive and data reduction software have occurred since the last revision of the HST Data Handbook introductory chapters. vii viii Preface Future changes in this handbook are anticipated as the Multimission Archive at STScI (MAST) expands to cover additional missions, and as StarView, PyRAF, and STSDAS software continue to evolve. The reader is advised to consult the STScI web site at http://www.stsci.edu/hst for the latest information. (Editor, HST Introduction) CHAPTER 1: Getting HST Data In this chapter... 1.1 Archive Overview
Recommended publications
  • Hubble Space Telescope Primer for Cycle 25
    January 2017 Hubble Space Telescope Primer for Cycle 25 An Introduction to the HST for Phase I Proposers 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started For information about submitting a HST observing proposal, please begin at the Cycle 25 Announcement webpage at: http://www.stsci.edu/hst/proposing/docs/cycle25announce Procedures for submitting a Phase I proposal are available at: http://apst.stsci.edu/apt/external/help/roadmap1.html Technical documentation about the instruments are available in their respective handbooks, available at: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help Contact the STScI Help Desk by sending a message to [email protected]. Voice mail may be left by calling 1-800-544-8125 (within the US only) or 410-338-1082. The HST Primer for Cycle 25 was edited by Susan Rose, Senior Technical Editor and contributions from many others at STScI, in particular John Debes, Ronald Downes, Linda Dressel, Andrew Fox, Norman Grogin, Katie Kaleida, Matt Lallo, Cristina Oliveira, Charles Proffitt, Tony Roman, Paule Sonnentrucker, Denise Taylor and Leonardo Ubeda. Send comments or corrections to: Hubble Space Telescope Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] CHAPTER 1: Introduction In this chapter... 1.1 About this Document / 7 1.2 What’s New This Cycle / 7 1.3 Resources, Documentation and Tools / 8 1.4 STScI Help Desk / 12 1.1 About this Document The Hubble Space Telescope Primer for Cycle 25 is a companion document to the HST Call for Proposals1.
    [Show full text]
  • Historian Corner
    Historian Corner - Low Earth Orbit (roughly circular orbit) By Barb Sande - Perigee: 537.0 km (333.7 miles) [email protected] - Apogee: 540.9 km (336.1 miles) - Inclination: 28.47 degrees - Period: 95.42 minutes ANNOUNCEMENT: MARK YOUR CALENDARS!!! HST Mission: th The Titan Panel Discussion in honor of the 15 - On-going optical (near-infrared to UV wavelength) anniversary of the end of the program has been astronomical observations of the universe scheduled for Thursday, October 15 from 1:00 to 3:00 - End of HST mission estimated to be 2030-2040 pm MDT via a Zoom teleconference (virtual panel). - Estimated costs of the HST program (including There are ten volunteers currently enlisted to participate replacement instruments and five servicing missions) in the panel, including Norm Fox, Bob Hansen, Ken = ~ $10 billion – does not include on-going science Zitek, Ralph Mueller, Larry Perkins, Dave Giere, Dennis Connection to Lockheed Martin: Brown, Jack Kimpton, Fred Luhmann, and Samuel - Lockheed Sunnyvale built and integrated the main Lukens. If you want to call into the panel discussion to HST spacecraft and systems hear the roundtable, please RSVP to me at the email - Martin Marietta/Lockheed Martin provided six above (emails only for RSVP, no phone calls). There are external tanks and associated subsystems for the limitations to Zoom attendance for meetings. The shuttle launches supporting the HST program. details of the meeting will be emailed to the attendees - at a later date (Zoom link). Program Profile This 2020 Q3 issue profiles the Hubble Space Telescope (HST) in honor of its 30th anniversary in orbit.
    [Show full text]
  • Hubble Space Telescope Primer for Cycle 18
    January 2010 Hubble Space Telescope Primer for Cycle 18 An Introduction to HST for Phase I Proposers Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started If you are interested in submitting an HST proposal, then proceed as follows: • Visit the Cycle 18 Announcement Web page: http://www.stsci.edu/hst/proposing/docs/cycle18announce Then continue by following the procedure outlined in the Phase I Roadmap available at: http://apst.stsci.edu/apt/external/help/roadmap1.html More technical documentation, such as that provided in the Instrument Handbooks, can be accessed from: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help • Visit STScI’s Web site at: http://www.stsci.edu • Contact the STScI Help Desk. Either send e-mail to [email protected] or call 1-800-544-8125; from outside the United States and Canada, call [1] 410-338-1082. The HST Primer for Cycle 18 was edited by Francesca R. Boffi, with the technical assistance of Susan Rose and the contributions of many others from STScI, in particular Alessandra Aloisi, Daniel Apai, Todd Boroson, Brett Blacker, Stefano Casertano, Ron Downes, Rodger Doxsey, David Golimowski, Al Holm, Helmut Jenkner, Jason Kalirai, Tony Keyes, Anton Koekemoer, Jerry Kriss, Matt Lallo, Karen Levay, John MacKenty, Jennifer Mack, Aparna Maybhate, Ed Nelan, Sami-Matias Niemi, Cheryl Pavlovsky, Karla Peterson, Larry Petro, Charles Proffitt, Neill Reid, Merle Reinhart, Ken Sembach, Paula Sessa, Nancy Silbermann, Linda Smith, Dave Soderblom, Denise Taylor, Nolan Walborn, Alan Welty, Bill Workman and Jim Younger.
    [Show full text]
  • Using the Tycho Catalogue for Axaf
    187 USING THE TYCHO CATALOGUE FOR AXAF: GUIDING AND ASPECT RECONSTRUCTION FOR HALF-ARCSECOND X-RAY IMAGES P.J. Green, T.A. Aldcroft, M.R. Garcia, P. Slane, J. Vrtilek Smithsonian Astrophysical Observatory High resolution imaging and/or fast timing measure- ABSTRACT ments are enabled by the High Resolution Camera HRC; Kenter 1996. Advances over the high resolu- tion imagers of Einstein and ROSAT include smaller AXAF, the Advanced X-ray Astrophysics Facility will p ore size, larger micro channel plate area, lower back- b e the third satellite in the series of great observato- ground, energy resolution, and charged particle anti- ries in the NASA program, after the Hubble Space coincidence. Telescop e and the Gamma Ray Observatory. At launch in fall 1998, AXAF will carry a high reso- The AXAF CCD Imaging Sp ectrometer ACIS; lution mirror, two imaging detectors, and two sets of Garmire 1997 is a CCD array for simultaneous imag- transmission gratings Holt 1993. Imp ortant AXAF ing and sp ectroscopyE=E =2050 over almost features are: an order of magnitude improvementin the entire AXAF bandpass with high quantum e- spatial resolution, good sensitivity from 0.1{10keV, ciency and low read noise. Pictures of extended ob- and the capability for high sp ectral resolution obser- jects can b e obtained along with sp ectral information vations over most of this range. from each element of the picture. The ACIS-I array comprises 4 CCDs arranged in a square which pro- The Tycho Catalogue from the Hipparcos mission 2 vide a 16 16 arcmin eld.
    [Show full text]
  • Vireo Manual.Pdf
    VIREO: The Virtual Educational Observatory 1 VIREO: THE VIRTUAL EDUCATIONAL OBSERVATORY Software Reference Guide A Manual to Accompany Software Document SM 20: Circ.Version 1.0 Department of Physics Gettysburg College Gettysburg, PA 17325 Telephone: (717) 337-6028 email: [email protected] Software, and Manuals prepared by: Contemporary Laboratory Glenn Snyder and Laurence Marschall (CLEA PROJECT, Gettysburg College) Experiences in Astronomy VIREO: The Virtual Educational Observatory 2 Contents Introduction To Vireo: The Virtual Educational Observatory .................................................................................. 3 Starting Vireo ................................................................................................................................................................ 4 The Virtual Observatory Control Screen ..................................................................................................................... 4 Using an Optical Telescope ........................................................................................................................................... 5 Using the Photometer .................................................................................................................................................... 8 Using the Spectrometer ............................................................................................................................................... 11 Using the Multi-Channel Spectrometer .....................................................................................................................
    [Show full text]
  • Building a Popular Science Library Collection for High School to Adult Learners: ISSUES and RECOMMENDED RESOURCES
    Building a Popular Science Library Collection for High School to Adult Learners: ISSUES AND RECOMMENDED RESOURCES Gregg Sapp GREENWOOD PRESS BUILDING A POPULAR SCIENCE LIBRARY COLLECTION FOR HIGH SCHOOL TO ADULT LEARNERS Building a Popular Science Library Collection for High School to Adult Learners ISSUES AND RECOMMENDED RESOURCES Gregg Sapp GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Sapp, Gregg. Building a popular science library collection for high school to adult learners : issues and recommended resources / Gregg Sapp. p. cm. Includes bibliographical references and index. ISBN 0–313–28936–0 1. Libraries—United States—Special collections—Science. I. Title. Z688.S3S27 1995 025.2'75—dc20 94–46939 British Library Cataloguing in Publication Data is available. Copyright ᭧ 1995 by Gregg Sapp All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 94–46939 ISBN: 0–313–28936–0 First published in 1995 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. Printed in the United States of America TM The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To Kelsey and Keegan, with love, I hope that you never stop learning. Contents Preface ix Part I: Scientific Information, Popular Science, and Lifelong Learning 1
    [Show full text]
  • Nasa Space Telescope Imaging Technology
    NASA SPACE TELESCOPE IMAGING TECHNOLOGY MISSION FACTS ENABLING TECHNOLOGY > Wide Field and Planetary Camera HUBBLE SPACE TELESCOPE Better understand > Completed more than 1.3 MILLION OBSERVATIONS the age of the universe > Traveled 4+ BILLION MILES on low Earth orbit 4+ > Goddard High Resolution Spectrograph “THE FORERUNNER” BILLION > Discovered that the universe is approximately MILES > High Speed Photometer L3HARRIS ROLE: 13.7 BILLION YEARS OLD > Faint Object Camera & Spectrograph Provided fine guidance and focus control systems and 2.4m backup mirror CHANDRA X-RAY Explain the structure, > Uses X-RAY VISION to detect extremely hot, > High Resolution Camera activity and evolution high-energy regions of space OBSERVATORY > Advanced CCD Imaging Spectrometer of the universe > Flies 200 TIMES HIGHER than Hubble – X-RAY “THE DETECTIVE” VISION > High Energy Transmission more than 1/3 of the way to the moon Grating Spectrometer L3HARRIS ROLE: > Provides data on quasars as they were > Low Energy Transmission Designed, integrated and 10 BILLION YEARS AGO Grating Spectrometer tested imaging system JAMES WEBB Observe distant events > Will be the MOST POWERFUL space telescope ever > Near-Infrared Camera and objects, such as the SPACE TELESCOPE > Will balance between gravity of Earth and sun > Near-Infrared Spectrograph formation of the first 940,000 MILES IN SPACE MOST “THE HISTORIAN” galaxies, stars and POWERFUL > Mid-Infrared Instrument planets in the universe > 6.5-METER MIRROR made of 18 gold-coated > Fine Guidance Sensor/Near InfraRed L3HARRIS
    [Show full text]
  • Number 28 Space Telescope European Coordinating Facility
    January 2001 Number 28 Page 1 Number 28 January 2001 This 140 nm ultraviolet image of Jupiter was taken with the Hubble Space Telescope Imaging Spectrograph (STIS) on 26 November 1998 (Credit: NASA; ESA & John T. Clarke, Univ. of Michigan) when Jupiter was at a distance of 700 million km from Earth. In addition to the main auroral oval, centred on the magnetic north pole, and a pattern of more diffuse emission inside the polar cap, unique features are the ‘magnetic footprints’ of three of Jupiter’s satellites, Io, Ganymede and Europa. Space Telescope ST-ECF Newsletter ST-ECF European Coordinating Facility Page 2 ST–ECF Newsletter European news As the ESA contribution to HST moves away Group and, in September, by the Space Science Advisory from hardware provision, support for another Committee that NGST be selected as the next ‘Flexi-mission’ project has been agreed for the ST-ECF. in ESA’s future plan for implementation between 2008 and Following the successful provision of a 2013. This selection was endorsed by the Science Programme software package for extraction of NICMOS Committee at its meeting in October. grism spectra (NICMOSLook, see ST-ECF Newsletter 24, p. 7, This approval has allowed ESA to follow up the industry 1997), support for the spectroscopic modes of the ACS will studies it funded during 1999 with new investigations also be provided. ACS has both grisms and prisms: the Wide focussed on the specific European contributions to the Field Camera, with a coverage of 3.4' × 3.4', is fitted with a mission. In November, a study of the 1–5µm near-IR multi- grism offering 40Å/pixel resolution (5500–11000Å) over the object spectrograph to be provided by ESA was awarded to a full WFC field; the High resolution Camera (26'' × 29'') consortium headed by Astrium (Munich) and Laboratoire provides 30Å/pix grism spectra and prism spectra with a d’Astronomie Spatiale (Marseille).
    [Show full text]
  • Instrument Handbook V7.0
    Version 7.0 October 2004 Near Infrared Camera and Multi-Object Spectrometer Instrument Handbook for Cycle 14 Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the NICMOS World Wide Web site: • URL: http://www.stsci.edu/hst/nicmos Revision History Version Date Editors 1.0 June 1996 D.J. Axon, D. Calzetti, J.W. MacKenty, C. Skinner 2.0 July 1997 J.W. MacKenty, C. Skinner, D. Calzetti, and D.J. Axon 3.0 June 1999 D. Calzetti, L. Bergeron, T. Böker, M. Dickinson, S. Holfeltz, L. Mazzuca, B. Monroe, A. Nota, A. Sivaramakrishnan, A. Schultz, M. Sosey, A. Storrs, A. Suchkov. 4.0 May 2000 T. Böker, L. Bergeron, D. Calzetti, M. Dickinson, S. Holfeltz, B. Monroe, B. Rauscher, M. Regan, A. Sivaramakrishnan, A. Schultz, M. Sosey, A. Storrs 4.1 May 2001 A. Schultz, S. Arribas, L. Bergeron, T. Böker, D. Calzetti, M. Dickinson, S. Holfeltz, B. Monroe, K. Noll, L. Petro, M. Sosey 5.0 October 2002 S. Malhotra, L. Mazzuca, D. Calzetti, S. Arribas, L. Bergeron, T. Böker, M. Dickinson, B. Mobasher, K. Noll, L. Petro, E. Roye, A. Schultz, M. Sosey, C. Xu 6.0 October 2003 E. Roye, K. Noll, S.
    [Show full text]
  • Kepler Press
    National Aeronautics and Space Administration PRESS KIT/FEBRUARY 2009 Kepler: NASA’s First Mission Capable of Finding Earth-Size Planets www.nasa.gov Media Contacts J.D. Harrington Policy/Program Management 202-358-5241 NASA Headquarters [email protected] Washington 202-262-7048 (cell) Michael Mewhinney Science 650-604-3937 NASA Ames Research Center [email protected] Moffett Field, Calif. 650-207-1323 (cell) Whitney Clavin Spacecraft/Project Management 818-354-4673 Jet Propulsion Laboratory [email protected] Pasadena, Calif. 818-458-9008 (cell) George Diller Launch Operations 321-867-2468 Kennedy Space Center, Fla. [email protected] 321-431-4908 (cell) Roz Brown Spacecraft 303-533-6059. Ball Aerospace & Technologies Corp. [email protected] Boulder, Colo. 720-581-3135 (cell) Mike Rein Delta II Launch Vehicle 321-730-5646 United Launch Alliance [email protected] Cape Canaveral Air Force Station, Fla. 321-693-6250 (cell) Contents Media Services Information .......................................................................................................................... 5 Quick Facts ................................................................................................................................................... 7 NASA’s Search for Habitable Planets ............................................................................................................ 8 Scientific Goals and Objectives .................................................................................................................
    [Show full text]
  • NICMOS Data Handbook
    Version 5.0 January, 2002 NICMOS Data Handbook Hubble Division 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the Web site: • URL: http://hst.stsci.edu/nicmos. NICMOS Revision History Version Date Editors 3.0 October 1997 Daniela Calzetti 4.0 December 1999 Mark Dickinson 5.0 January 2002 Mark Dickinson, NICMOS Editor Bahram Mobasher, Chief Editor Contributors STScI NICMOS Group (past & present members), including: Santiago Arribas, Eddie Bergeron, Torsten Boeker, Howard Bushouse, Daniela Calzetti, Luis Colina, Mark Dickinson, Sherie Holfeltz, Lisa Mazzuca, Bahram Mobasher, Keith Noll, Antonella Nota, Erin Roye, Chris Skinner, Al Schultz, Anand Sivaramakrishnan, Megan Sosey, Alex Storrs, Anatoly Suchkov, Chun Xu ST-ECF: Wolfram Freudling. Citation In publications, refer to this document as: Dickinson, M. E. et al. 2002, in HST NICMOS Data Handbook v. 5.0, ed. B. Mobasher, Baltimore, STScI Send comments or corrections to: Hubble Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Preface .................................................................................... vii Chapter 1: Instrument Overview .................. 1-1 1.1 Instrument Overview ................................................. 1-1 1.2 Detector Readout Modes ......................................... 1-4 1.2.1 MULTIACCUM......................................................... 1-5 1.2.2 ACCUM.................................................................... 1-5 1.2.3 BRIGHTOBJ ............................................................ 1-6 1.2.4 RAMP .....................................................................
    [Show full text]
  • An IRAF Package for the Quantitative Morphology Analysis of Distant Galaxies
    Astronomical Data Analysis Software and Systems VII ASP Conference Series, Vol. 145, 1998 R. Albrecht, R. N. Hook and H. A. Bushouse, eds. GIM2D: An IRAF package for the Quantitative Morphology Analysis of Distant Galaxies Luc Simard UCO/Lick Observatory, Kerr Hall, University of California, Santa Cruz, CA 95064, Email: [email protected] Abstract. This paper describes the capabilities of GIM2D, an IRAF package for the quantitative morphology analysis of distant galaxies. GIM2D automatically decomposes all the objects on an input image as the sum of a S´ersic profile and an exponential profile. Each decompo- sition is then subtracted from the input image, and the results are a “galaxy-free” image and a catalog of quantitative structural parameters. The heart of GIM2D is the Metropolis Algorithm which is used to find the best parameter values and their confidence intervals through Monte- Carlo sampling of the likelihood function. GIM2D has been successfully used on a wide range of datasets: the Hubble Deep Field, distant galaxy clusters and compact narrow-emission line galaxies. 1. Introduction GIM2D (Galaxy IMage 2D) is an IRAF package written to perform detailed bulge/disk decompositions of low signal-to-noise images of distant galaxies. GIM2D consists of 14 tasks which can be used to fit 2D galaxy profiles, build residual images, simulate realistic galaxies, and determine multidimensional galaxy selection functions. This paper gives an overview of GIM2D capabili- ties. 2. Image Modelling The first component (“bulge”) of the 2D surface brightness used by GIM2D to model galaxy images is a S´ersic (1968) profile of the form: Σ(r)=Σexp b[(r/r )1=n 1] (1) e {− e − } where Σ(r) is the surface brightness at r.
    [Show full text]