NEWSLETTER Issue: 487 - March 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Tour Through Mirzakhani's Work on Moduli Spaces of Riemann Surfaces
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 3, July 2020, Pages 359–408 https://doi.org/10.1090/bull/1687 Article electronically published on February 3, 2020 A TOUR THROUGH MIRZAKHANI’S WORK ON MODULI SPACES OF RIEMANN SURFACES ALEX WRIGHT Abstract. We survey Mirzakhani’s work relating to Riemann surfaces, which spans about 20 papers. We target the discussion at a broad audience of non- experts. Contents 1. Introduction 359 2. Preliminaries on Teichm¨uller theory 361 3. The volume of M1,1 366 4. Integrating geometric functions over moduli space 367 5. Generalizing McShane’s identity 369 6. Computation of volumes using McShane identities 370 7. Computation of volumes using symplectic reduction 371 8. Witten’s conjecture 374 9. Counting simple closed geodesics 376 10. Random surfaces of large genus 379 11. Preliminaries on dynamics on moduli spaces 382 12. Earthquake flow 386 13. Horocyclic measures 389 14. Counting with respect to the Teichm¨uller metric 391 15. From orbits of curves to orbits in Teichm¨uller space 393 16. SL(2, R)-invariant measures and orbit closures 395 17. Classification of SL(2, R)-orbit closures 398 18. Effective counting of simple closed curves 400 19. Random walks on the mapping class group 401 Acknowledgments 402 About the author 402 References 403 1. Introduction This survey aims to be a tour through Maryam Mirzakhani’s remarkable work on Riemann surfaces, dynamics, and geometry. The star characters, all across Received by the editors May 12, 2019. 2010 Mathematics Subject Classification. Primary 32G15. c 2020 American Mathematical Society 359 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 360 ALEX WRIGHT 2 3117 4 5 12 14 16 18 19 9106 13 15 17 8 Figure 1.1. -
Prvních Deset Abelových Cen Za Matematiku
Prvních deset Abelových cen za matematiku The first ten Abel Prizes for mathematics [English summary] In: Michal Křížek (author); Lawrence Somer (author); Martin Markl (author); Oldřich Kowalski (author); Pavel Pudlák (author); Ivo Vrkoč (author); Hana Bílková (other): Prvních deset Abelových cen za matematiku. (English). Praha: Jednota českých matematiků a fyziků, 2013. pp. 87–88. Persistent URL: http://dml.cz/dmlcz/402234 Terms of use: © M. Křížek © L. Somer © M. Markl © O. Kowalski © P. Pudlák © I. Vrkoč Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Summary The First Ten Abel Prizes for Mathematics Michal Křížek, Lawrence Somer, Martin Markl, Oldřich Kowalski, Pavel Pudlák, Ivo Vrkoč The Abel Prize for mathematics is an international prize presented by the King of Norway for outstanding results in mathematics. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) who found that there is no explicit formula for the roots of a general polynomial of degree five. The financial support of the Abel Prize is comparable with the Nobel Prize, i.e., about one million American dollars. Niels Henrik Abel (1802–1829) M. Křížek a kol.: Prvních deset Abelových cen za matematiku, JČMF, Praha, 2013 87 Already in 1899, another famous Norwegian mathematician Sophus Lie proposed to establish an Abel Prize, when he learned that Alfred Nobel would not include a prize in mathematics among his five proposed Nobel Prizes. -
2010 Table of Contents Newsletter Sponsors
OKLAHOMA/ARKANSAS SECTION Volume 31, February 2010 Table of Contents Newsletter Sponsors................................................................................ 1 Section Governance ................................................................................ 6 Distinguished College/University Teacher of 2009! .............................. 7 Campus News and Notes ........................................................................ 8 Northeastern State University ............................................................. 8 Oklahoma State University ................................................................. 9 Southern Nazarene University ............................................................ 9 The University of Tulsa .................................................................... 10 Southwestern Oklahoma State University ........................................ 10 Cameron University .......................................................................... 10 Henderson State University .............................................................. 11 University of Arkansas at Monticello ............................................... 13 University of Central Oklahoma ....................................................... 14 Minutes for the 2009 Business Meeting ............................................... 15 Preliminary Announcement .................................................................. 18 The Oklahoma-Arkansas Section NExT ............................................... 21 The 2nd Annual -
FIELDS MEDAL for Mathematical Efforts R
Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study, -
1 Getting a Knighthood
Getting a knighthood (Bristol, June 1996) It's unreal, isn't it? I've always had a strong sense of the ridiculous, of the absurd, and this is working overtime now. Many of you must have been thinking, ‘Why Berry?’ Well, since I am the least knightly person I know, I have been asking the same question, and although I haven't come up with an answer I can offer a few thoughts. How does a scientist get this sort of national recognition? One way is to do something useful to the nation, that everyone agrees is important to the national well- being or even survival. Our home-grown example is of course Sir Charles Frank's war work. Or, one can sacrifice several years of one's life doing high-level scientific administration, not always received with gratitude by the scientific hoi polloi but important to the smooth running of the enterprise. Sir John Kingman is in this category. Another way – at least according to vulgar mythology – is to have the right family background. Well, my father drove a cab in London and my mother ruined her eyes as a dressmaker. Another way is to win the Nobel Prize or one of the other huge awards like the Wolf or King Faisal prizes, like Sir George Porter as he then was, or Sir Michael Atiyah. The principle here I suppose is, to those that have, more shall be given. I don't qualify on any of these grounds. The nearest I come is to have have won an fairly large number of smaller awards. -
Bfm:978-1-4612-2582-9/1.Pdf
Progress in Mathematics Volume 131 Series Editors Hyman Bass Joseph Oesterle Alan Weinstein Functional Analysis on the Eve of the 21st Century Volume I In Honor of the Eightieth Birthday of I. M. Gelfand Simon Gindikin James Lepowsky Robert L. Wilson Editors Birkhauser Boston • Basel • Berlin Simon Gindikin James Lepowsky Department of Mathematics Department of Mathematics Rutgers University Rutgers University New Brunswick, NJ 08903 New Brunswick, NJ 08903 Robert L. Wilson Department of Mathematics Rutgers University New Brunswick, NJ 08903 Library of Congress Cataloging-in-Publication Data Functional analysis on the eve of the 21 st century in honor of the 80th birthday 0fI. M. Gelfand I [edited) by S. Gindikin, 1. Lepowsky, R. Wilson. p. cm. -- (Progress in mathematics ; vol. 131) Includes bibliographical references. ISBN-13:978-1-4612-7590-9 e-ISBN-13:978-1-4612-2582-9 DOl: 10.1007/978-1-4612-2582-9 1. Functional analysis. I. Gel'fand, I. M. (lzraU' Moiseevich) II. Gindikin, S. G. (Semen Grigor'evich) III. Lepowsky, J. (James) IV. Wilson, R. (Robert), 1946- . V. Series: Progress in mathematics (Boston, Mass.) ; vol. 131. QA321.F856 1995 95-20760 515'.7--dc20 CIP Printed on acid-free paper d»® Birkhiiuser ltGD © 1995 Birkhliuser Boston Softcover reprint of the hardcover 1st edition 1995 Copyright is not claimed for works of u.s. Government employees. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the copyright owner. -
Bart, Hempfling, Kaashoek. (Eds.) Israel Gohberg and Friends.. on The
Israel Gohberg and Friends On the Occasion of his 80th Birthday Harm Bart Thomas Hempfling Marinus A. Kaashoek Editors Birkhäuser Basel · Boston · Berlin Editors: Harm Bart Marinus A. Kaashoek Econometrisch Instituut Department of Mathematics, FEW Erasmus Universiteit Rotterdam Vrije Universiteit Postbus 1738 De Boelelaan 1081A 3000 DR Rotterdam 1081 HV Amsterdam The Netherlands The Netherlands e-mail: [email protected] e-mail: [email protected] Thomas Hempfling Editorial Department Mathematics Birkhäuser Publishing Ltd. P.O. Box 133 4010 Basel Switzerland e-mail: thomas.hempfl[email protected] Library of Congress Control Number: 2008927170 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 978-3-7643-8733-4 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced of chlorine-free pulp. TCF ∞ Printed in Germany ISBN 978-3-7643-8733-4 e-ISBN 978-3-7643-8734-1 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Contents Preface.......................................................................ix CongratulationsfromthePublisher...........................................xii PartI.MathematicalandPhilosophical-MathematicalTales...................1 I. -
A Short Survey of Cyclic Cohomology
Clay Mathematics Proceedings Volume 10, 2008 A Short Survey of Cyclic Cohomology Masoud Khalkhali Dedicated with admiration and affection to Alain Connes Abstract. This is a short survey of some aspects of Alain Connes’ contribu- tions to cyclic cohomology theory in the course of his work on noncommutative geometry over the past 30 years. Contents 1. Introduction 1 2. Cyclic cohomology 3 3. From K-homology to cyclic cohomology 10 4. Cyclic modules 13 5. Thelocalindexformulaandbeyond 16 6. Hopf cyclic cohomology 21 References 28 1. Introduction Cyclic cohomology was discovered by Alain Connes no later than 1981 and in fact it was announced in that year in a conference in Oberwolfach [5]. I have reproduced the text of his abstract below. As it appears in his report, one of arXiv:1008.1212v1 [math.OA] 6 Aug 2010 Connes’ main motivations to introduce cyclic cohomology theory came from index theory on foliated spaces. Let (V, ) be a compact foliated manifold and let V/ denote the space of leaves of (V, ).F This space, with its natural quotient topology,F is, in general, a highly singular spaceF and in noncommutative geometry one usually replaces the quotient space V/ with a noncommutative algebra A = C∗(V, ) called the foliation algebra of (V,F ). It is the convolution algebra of the holonomyF groupoid of the foliation and isF a C∗-algebra. It has a dense subalgebra = C∞(V, ) which plays the role of the algebra of smooth functions on V/ . LetA D be a transversallyF elliptic operator on (V, ). The analytic index of D, index(F D) F ∈ K0(A), is an element of the K-theory of A. -
Condenser Capacity and Hyperbolic Perimeter
CONDENSER CAPACITY AND HYPERBOLIC PERIMETER MOHAMED M. S. NASSER, OONA RAINIO, AND MATTI VUORINEN Abstract. We apply domain functionals to study the conformal capacity of condensers (G; E) where G is a simply connected domain in the complex plane and E is a compact subset of G. Due to conformal invariance, our main tools are the hyperbolic geometry and functionals such as the hyperbolic perimeter of E. Novel computational algorithms based on implementations of the fast multipole method are combined with analytic techniques. Computational experiments are used throughout to, for instance, demonstrate sharpness of established inequalities. In the case of model problems with known analytic solutions, very high precision of computation is observed. 1. Introduction A condenser is a pair (G; E), where G ⊂ Rn is a domain and E is a compact non-empty subset of G. The conformal capacity of this condenser is defined as [14, 17, 20] Z (1.1) cap(G; E) = inf jrujndm; u2A G 1 where A is the class of C0 (G) functions u : G ! [0; 1) with u(x) ≥ 1 for all x 2 E and dm is the n-dimensional Lebesgue measure. The conformal capacity of a condenser is one of the key notions in potential theory of elliptic partial differential equations [20, 29] and it has numerous applications to geometric function theory, both in the plane and in higher dimensions, [10, 14, 15, 17]. The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length, or, perimeter. Constrained extremal problems of this type, where the constraints involve geometric or physical quantities, have been studied in several thousands of papers, see e.g. -
CNI -News Feb 11
February 11 ! CNI Belfast Cathedral girl chorister records at St Paul’s ! Tania Murphy, a member of the Cathedral Girls’ Choir, has recently returned to St Paul’s Cathedral, London, to record a CD with St Paul's Cathedral Choir and choristers from other UK cathedrals. The Diamond Fund for Choristers CD will be released on March 17. This Fund was launched last April at a concert in St Paul’s to mark the Friends of Cathedral Music’s diamond jubilee. The concert brought together choristers [email protected] Page !1 February 11 representing 60 cathedrals along with the choir of St Paul’s for the first time ever Tania was selected by St Anne’s Master of the Choristers David Stevens to represent the Cathedral at the concert in St Paul’s on April 27 last year. The concert was presented by Classic FM’s Aled Jones and Alexander Armstrong, and held in the presence of HRH The Duchess of Gloucester. After her visit to St Paul’s, Tania said she had formed new friendships with choristers from different parts of the country who shared the same interests, and described it as ‘definitely an experience which I will never forget!’ Tania has sung with the St Anne’s Choir for almost four years. “I love being a chorister of St Anne's Cathedral as I have always been intrigued by the concept of choral music and the resonating sound of the music in such a big cathedral as St Anne's,” she said. “Being a chorister has given me so many opportunities such as singing in Puccini's opera Turandot, singing with the St Anne's choir on a tour of Paris, and of course this wonderful opportunity of being able to sing in St Paul's Cathedral, London.” [email protected] Page !2 February 11 ! Social Action Award for Armagh Church Lads' and Church Girls' Brigade Members of St Saviour’s, Dobbin, and St Aidan’s, Grange, Companies, both from Armagh Diocese, were at Buckingham Palace recently to receive a Social Action Award from the Prince of Wales. -
Mathematician Awarded Nobel Prize Growing Optimism That Fermat's
THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA Mathematician Awarded Nobel Prize Volume 14, Number 6 Keith Devlin The awarding of the Nobel Prize in econom It was the application ics to the American John Nash on October of Nash's work in eco II th meant that for the firsttime in the 93-year nomic theory that led to history of the Nobel Prizes, the prize was his recent Nobel Prize, In this Issue awarded for work in pure mathematics. which he shares with fellow American John When the Swedish chemist, engineer, and phi Harsanyi and German 3 MAA Secretary's lanthropistAlfred Bernhard Nobel established Reinhard Selten. Report the awards in 1901, he stipulated chemistry, Nash's contribution to physics, physiology and medicine, and litera the combined work ture, but did not create a prize for mathematics. 4 Joint Mathematics which won the award It has been rumored that a particularly bad was in game theory. Meetings Update experience in mathematics at high school led to this exclusion of the "queen of sciences", or Nash's key idea-known nowadays as Nash 6 Search Committee it may simply be that Nobel felt that math equilibrium-was developed in his Ph.D. the Diary ematics was not, in itself, of sufficient sis submitted to the Princeton University relevance to human development to warrant Mathematics Department in 1950, when Nash its own award. Whateverthe reason, the math was just 22 years old. The thesis had taken him 10 Networks in ematicians have had to make do with their a mere two years to complete. -
Harmonic and Complex Analysis and Its Applications
Trends in Mathematics Alexander Vasil’ev Editor Harmonic and Complex Analysis and its Applications Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be submitted using the Online Book Project Submission Form at our website www.birkhauser-science.com. Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without proofs, or which do not contain any significantly new results, should be rejected. High quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for direct reproduction. Any version of TEX is acceptable, but the entire collection of files must be in one particular dialect of TEX and unified according to simple instructions available from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential that the final version of the entire material be submitted no later than one year after the conference. For further volumes: http://www.springer.com/series/4961 Harmonic and Complex Analysis and its Applications Alexander Vasil’ev Editor Editor Alexander Vasil’ev Department of Mathematics University of Bergen Bergen Norway ISBN 978-3-319-01805-8 ISBN 978-3-319-01806-5 (eBook) DOI 10.1007/978-3-319-01806-5 Springer Cham Heidelberg New York Dordrecht London Mathematics Subject Classification (2010): 13P15, 17B68, 17B80, 30C35, 30E05, 31A05, 31B05, 42C40, 46E15, 70H06, 76D27, 81R10 c Springer International Publishing Switzerland 2014 This work is subject to copyright.