Mathematician Awarded Nobel Prize Growing Optimism That Fermat's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bfm:978-1-4612-2582-9/1.Pdf
Progress in Mathematics Volume 131 Series Editors Hyman Bass Joseph Oesterle Alan Weinstein Functional Analysis on the Eve of the 21st Century Volume I In Honor of the Eightieth Birthday of I. M. Gelfand Simon Gindikin James Lepowsky Robert L. Wilson Editors Birkhauser Boston • Basel • Berlin Simon Gindikin James Lepowsky Department of Mathematics Department of Mathematics Rutgers University Rutgers University New Brunswick, NJ 08903 New Brunswick, NJ 08903 Robert L. Wilson Department of Mathematics Rutgers University New Brunswick, NJ 08903 Library of Congress Cataloging-in-Publication Data Functional analysis on the eve of the 21 st century in honor of the 80th birthday 0fI. M. Gelfand I [edited) by S. Gindikin, 1. Lepowsky, R. Wilson. p. cm. -- (Progress in mathematics ; vol. 131) Includes bibliographical references. ISBN-13:978-1-4612-7590-9 e-ISBN-13:978-1-4612-2582-9 DOl: 10.1007/978-1-4612-2582-9 1. Functional analysis. I. Gel'fand, I. M. (lzraU' Moiseevich) II. Gindikin, S. G. (Semen Grigor'evich) III. Lepowsky, J. (James) IV. Wilson, R. (Robert), 1946- . V. Series: Progress in mathematics (Boston, Mass.) ; vol. 131. QA321.F856 1995 95-20760 515'.7--dc20 CIP Printed on acid-free paper d»® Birkhiiuser ltGD © 1995 Birkhliuser Boston Softcover reprint of the hardcover 1st edition 1995 Copyright is not claimed for works of u.s. Government employees. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the copyright owner. -
Bart, Hempfling, Kaashoek. (Eds.) Israel Gohberg and Friends.. on The
Israel Gohberg and Friends On the Occasion of his 80th Birthday Harm Bart Thomas Hempfling Marinus A. Kaashoek Editors Birkhäuser Basel · Boston · Berlin Editors: Harm Bart Marinus A. Kaashoek Econometrisch Instituut Department of Mathematics, FEW Erasmus Universiteit Rotterdam Vrije Universiteit Postbus 1738 De Boelelaan 1081A 3000 DR Rotterdam 1081 HV Amsterdam The Netherlands The Netherlands e-mail: [email protected] e-mail: [email protected] Thomas Hempfling Editorial Department Mathematics Birkhäuser Publishing Ltd. P.O. Box 133 4010 Basel Switzerland e-mail: thomas.hempfl[email protected] Library of Congress Control Number: 2008927170 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 978-3-7643-8733-4 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced of chlorine-free pulp. TCF ∞ Printed in Germany ISBN 978-3-7643-8733-4 e-ISBN 978-3-7643-8734-1 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Contents Preface.......................................................................ix CongratulationsfromthePublisher...........................................xii PartI.MathematicalandPhilosophical-MathematicalTales...................1 I. -
Ams / Maa Spectrum Vol 19
AMS / MAA SPECTRUM VOL 19 UNDERWOOD DUDLEY Numerology or What Pythagoras Wrought Originally published by The Mathematical Association of America, 1997. ISBN: 978-1-4704-5283-4 LCCN: 97-74345 Copyright © 1997, held by the American Mathematical Society Printed in the United States of America. Reprinted by the American Mathematical Society, 2019 The American Mathematical Society retains all rights except those granted to the United States Government. ⃝1 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10 9 8 7 6 5 4 3 2 24 23 22 21 20 19 10.1090/spec/019 AMS/MAA SPECTRUM VOL 19 Numerology or What Pythagoras Wrought Underwood Dudley SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications JAMES W. DANIEL, Chair Spectrum Editorial Board ARTHUR T. BENJAMIN, Editor DANIEL ASIMOV KATHLEEN BERVER DIPA CHOUDHURY RICHARD K. GUY JEFFREY NUNEMACHER ELLEN MAYCOCK PARKER JENNIFER J. QUINN EDWARD R. SCHEINERMAN SANFORD SEGAL SPECTRUM SERIES The Spectrum Series of the Mathematical Association of America was so named to reflect its purpose: to publish a broad range of books including biographies, accessible expositions of old or new mathematical ideas, reprints and revisions of excellent out-of- print books, popular works, and other monographs of high interest that will appeal to a broad range of readers, including students and teachers of mathematics, mathematical amateurs, and researchers. All the Math That’s Fit to Print, by Keith Devlin Circles: A Mathematical View, by Dan Pedoe Complex Numbers and Geometry, by Liang-shin Hahn Cryptology, by Albrecht Beutelspacher Five Hundred Mathematical Challenges, Edward J. -
A Tribute to Dick Askey
A tribute to Dick Askey Tom Koornwinder,∗ Walter Van Asschey and Ole Warnaarz February 2015 (last minor corrections 14 May 2015) Richard A. (Dick) Askey1 was born June 4, 1933 in St. Louis, Missouri. He received his PhD at Princeton University in 1961 under the direction of Salomon Bochner. After instructorships at Washington University and the University of Chicago he joined the faculty of the University of Wisconsin-Madison in 1963, where he became full professor in 1968. Since 2003 he is Professor Emeritus at that same institution. Dick received many awards and distinctions during the course of his mathematical career. He was elected member of the American Academy of Arts and Sciences in 1993 and of the National Academy of Sciences in 1999. Furthermore, he is a Honorary Fellow of the Indian Academy of Sciences and a Fellow of SIAM and of the American Mathematical Society. In 1983 he was an invited speaker at the International Congress of Mathematicians (ICM) in Warszawa. In 2012 he received an hon- orary doctorate from SASTRA University in Kumbakonam, India. Dick Askey's research interests are Special Functions and Orthogonal Polynomials, and more generally Classical Analysis. His works often touch upon aspects of approximation theory, har- monic analysis, number theory, combinatorics and probability theory. He published2 140 research articles in journals, conference proceedings and edited books. His most frequent coauthors are George Gasper, Mourad Ismail and Stephen Wainger. Dick's research publications include two AMS Memoirs: one written with Mourad Ismail in 1984 [7], and one with James Wilson in 1985 [8] on the Askey-Wilson polynomials, probably his most influential publication. -
Implications for Understanding the Role of Affect in Mathematical Thinking
Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Rena E. Gelb All Rights Reserved Abstract Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb The study examines the role of music in the lives and work of 20th century mathematicians within the framework of understanding the contribution of affect to mathematical thinking. The current study focuses on understanding affect and mathematical identity in the contexts of the personal, familial, communal and artistic domains, with a particular focus on musical communities. The study draws on published and archival documents and uses a multiple case study approach in analyzing six mathematicians. The study applies the constant comparative method to identify common themes across cases. The study finds that the ways the subjects are involved in music is personal, familial, communal and social, connecting them to communities of other mathematicians. The results further show that the subjects connect their involvement in music with their mathematical practices through 1) characterizing the mathematician as an artist and mathematics as an art, in particular the art of music; 2) prioritizing aesthetic criteria in their practices of mathematics; and 3) comparing themselves and other mathematicians to musicians. The results show that there is a close connection between subjects’ mathematical and musical identities. I identify eight affective elements that mathematicians display in their work in mathematics, and propose an organization of these affective elements around a view of mathematics as an art, with a particular focus on the art of music. -
AN INTEGRAL of PRODUCTS of ULTRASPHERICAL FUNCTIONS and a Q-EXTENSION
AN INTEGRAL OF PRODUCTS OF ULTRASPHERICAL FUNCTIONS AND A q-EXTENSION RICHARD ASKEY, TOM H. KOORNWINDER AND MIZAN RAHMAN ABSTRACT Let Pn(x) and Qn(x) denote the Legendre polynomial of degree n and the usual second solution to the differential equation, respectively. Din showed that J1__ 1 Qn(x) Pm(x) P1(x) dx vanishes when 11-m I < n < l+m, and Askey evaluated the integral for arbitrary integral values of l, m and n. We extend this to the evaluation of J1__ 1 D~(x) Ci,(x) Cf(x) (l -x2) 2•- 1 dx, where C~(x) is the ultraspherical polynomial and D~(x) is the appropriate second solution to the ultraspherical differential equation. A q-extension is found using the continuous q-ultraspherical polynomials of Rogers. Again the integral vanishes when I l-m I < n < l + m. It is shown that this vanishing phenomenon holds for quite general orthogonal polynomials. A related integral of the product of three Bessel functions is also evaluated. 1. Introduction Legendre polynomials Pn are orthogonal polynomials of degree non (-1, I) with constant weight function and with normalization Pn(l) = 1. Corresponding Legendre functions of the second kind Qn are defined on the cut (-1, I) by the principal value integral Qn(X) = ~ L1x11 p ~t; dt, -1 < x < 1, (1.1) cf. [26, (4.9.12) and (4.62.9)]. In a very surprising paper Din [9] showed that [ (x)dx = (l.2) 1 Qn(x)Pm(x)P1 0 when I l-m I< n < l+m. Part of the surprise was the vanishing and part was the fact that such an attractive result did not seem to have been found before. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
FOCUS August/September 2007
FOCUS August/September 2007 FOCUS is published by the Mathematical Association of America in January, February, FOCUS March, April, May/June, August/September, October, November, and December. Volume 27 Issue 6 Editor: Fernando Gouvêa, Colby College; [email protected] Managing Editor: Carol Baxter, MAA Inside: [email protected] Senior Writer: Harry Waldman, MAA hwald- 4 Mathematical Olympiad Winners Honored at the [email protected] U.S. Department of State Please address advertising inquiries to: 6 U.S. Team Places Fifth in IMO [email protected] 7 Math Circle Summer Teaching Training Institute President: Joseph Gallian 7 Robert Vallin Joins MAA as Associate Director for Student Activities First Vice President: Carl Pomerance, Second Vice President: Deanna Haunsperger, 8 Archives of American Mathematics Spotlight: The Isaac Jacob Secretary: Martha J. Siegel, Associate Schoenberg Papers Secretary: James J. Tattersall, Treasurer: John W. Kenelly 10 FOCUS on Students: Writing a Résumé Executive Director: Tina H. Straley 11 Attend ICME-11 in Monterrey, Mexico Director of Publications for Journals and 12 An Interview with Trachette Jackson Communications: Ivars Peterson 15 The Council on Undergraduate Research as a Resource FOCUS Editorial Board: Donald J. Albers; for Mathematicians Robert Bradley; Joseph Gallian; Jacqueline Giles; Colm Mulcahy; Michael Orrison; Pe- 16 2007 Award Winners for Distinguished Teaching ter Renz; Sharon Cutler Ross; Annie Selden; Hortensia Soto-Johnson; Peter Stanek; Ravi 18 MAA Awards and Prizes at MathFest 2007 Vakil. 20 In Memoriam Letters to the editor should be addressed to 21 Fond Memories of My Friend Deborah Tepper Haimo, 1921-2007 Fernando Gouvêa, Colby College, Dept. of Mathematics, Waterville, ME 04901, or by 22 “Teaching Us to Number Our Days” email to [email protected]. -
Edward Frenkel's
Death” based on a story by the great Japanese Program is a program of study of analogies and writer Yukio Mishima interconnections between four areas of science: and starred in it. Frenkel invented the plot and number theory, played the Mathematicianwho in both “Rites directed of Love the and film Math.” The Mathematician creates a formula for three on thecurves above over list are finite different fields, areasgeometry of love, but realizes that the formula can be used for mathematics.of Riemann surfaces, The modern and quantum formulation physics. of the The part both good and evil. To prevent it from falling into offirst the Langlands Program concerning these areas An invitation to math wrong hands, he hides the formula by tattooing was arrived at by the end of the 20th century. The it on the body of the woman he loves. The idea realization that the mathematics of the Langlands is that “a mathematical formula can be beautiful Program is intimately connected like a poem, a painting, or a piece of music” (page physics via mirror symmetry and electromagnetic Edward Frenkel’s to quantum 232). The rite of death plays an important role in duality came in the 21st century, around 2006- the Japanese culture. 2007. Frenkel personally participated in achieving review suggests that mathematics plays an important role the latter breakthrough. “Love & Math: in the world culture. HeThe describes title of Frenkel’s his motivation film hand account of the work done. His book presents a first- Why is the Langlands Program important? mathematicians are usually portrayed as weirdos Because it brings together several areas of the Heart of to create the film as follows. -
Creative Discomfort: the Culture of the Gelfand Seminar at Moscow University Slava Gerovitch
Creative Discomfort: The Culture of the Gelfand Seminar at Moscow University Slava Gerovitch 1 Memory Israel Gelfand’s weekly seminar at Moscow State University, which ran continu- ously from 1943 to 1989, has gained a legendary status in the Russian mathematics community. It has been praised as “maybe the greatest seminar in the history of the Mechanical-Mathematical Faculty of Moscow University,”1 “probably the best seminar in the history of mathematics,”2 and even “one of the most productive seminars in the history of science.”3 According to seminar participants, the seminar “ardently followed all that was new in mathematics anywhere in the world”4 and “made a decisive impact on mathematical life in Moscow.”5 Many outstanding mathematicians remember the seminar fondly as their crucial coming-of-age experience. Before we conjure up an idyllic image of a harmonic chorus of great mathe- maticians conversing magnificently on topics of utmost scholarly importance, let us read a bit more from the memoirs of the same seminar participants. The seminar has 1Tikhomirov (2008), p. 10. 2Interview with Aleksei Sosinskii, 20 October 2009 (http://polit.ru/article/2009/10/20/absossinsky_ about_imgelfand/). 3Tikhomirov (2008), p. 25. 4Landis (2007), p. 69. 5Arnold (2009), p. 40. S. Gerovitch (&) Department of Mathematics, Massachusetts Institute of Technology, Massachusetts, USA e-mail: [email protected] © Springer International Publishing Switzerland 2016 51 B. Larvor (ed.), Mathematical Cultures, Trends in the History of Science, DOI 10.1007/978-3-319-28582-5_4 -
A Mathematician's View of the Unreasonable Ineffectiveness Of
A MATHEMATICIAN'S VIEW OF THE UNREASONABLE INEFFECTIVENESS OF MATHEMATICS IN BIOLOGY. ALEXANDRE BOROVIK Abstract. This paper discusses, from a mathematician's point of view, the thesis formulated by Israel Gelfand, one of the greatest mathematicians of the 20th century, and one of the pioneers of mathematical biology: There is only one thing which is more unreasonable than the unreasonable effectiveness of mathematics in physics, and this is the unreasonable ineffectiveness of mathematics in biology. Disclaimer. The author writes in his personal capacity and views expressed do not represent position of any other person, corporation, organisation, or institution. 1. Israel Gelfand and his views on the role of mathematics in biology Perhaps a disclaimer is necessary: I am a mathematician, not a biologist. I was invited to write this paper because I found myself in a strange role of a custodian of a particular saying by Israel Gelfand, one of the greatest mathematicians of the 20th century, and a pioneer of mathematical biology. My blog [16] became its principal source: Eugene Wigner wrote a famous essay [55] on the unreasonable effective- ness of mathematics in natural sciences. He meant physics, of course. There is only one thing which is more unreasonable than the unreason- able effectiveness of mathematics in physics, and this is the unreasonable ineffectiveness of mathematics in biology. I wish to confirm that, indeed, I heard these words from Israel Gelfand in private conversations (and more than once) in about 1995{2005. Beyond that, everything in this paper is my opinion or my reconstruction of Gelfand's view of science and life from my conversations with him; I understand of course that my assessments arXiv:2103.04190v1 [math.HO] 6 Mar 2021 could be very lopsided. -
Richard Askey, UW-Madison, by J
Know Your Wisconsin Mathematician Interview with Professor Richard Askey, UW-Madison, by J. Sriskandarajah, MATC This is our sixth interview in this series. Professor Askey retired recently after a very successful career at the UW-Madison, Department of Mathematics (1963-2003). To learn more about his accomplishments, please visit: http://www.math.wisc.edu/~askey/ Q. Tell us something about your education, starting with elementary school. A. Here is one story from grade school. I was in third grade, which was on the first floor, and walked by the room on the second floor in which math was taught to fifth and sixth grade students. I saw a symbol I did not know so asked my teacher what it was. We had done addition, subtraction, multiplication and division, but not square roots. She explained it was the symbol for taking a square root, explained what square roots were and how to calculate them. Later when I was in fifth and sixth grades, the teacher who taught math to all of the fifth and sixth grade students was still teaching. She and all of the teachers I had in grade school were good. This was in a suburb just outside of the St. Louis City line. It was a neighborhood with some professionals and some manual workers. Two doors one direction was an electrical engineer who worked for the telephone company and on the other side was a bus driver. We lived in a small six room house, with four children and our parents, with a grandmother living with us when there were only three children.