Sketching in Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Sketching in Circuits Sketching in Circuits: Designing and building electronics on paper Jie Qi Leah Buechley MIT Media Lab MIT Media Lab 75 Amherst St, E14 548 75 Amherst St, E14 548 Cambridge, MA 02142 Cambridge, MA 02142 [email protected] [email protected] ABSTRACT protoboard, and the printed circuit board (PCB). The field of new methods and techniques for building electronics is quickly growing—from research in new The breadboard provides a press-fit grid for quick materials for circuit building, to modular toolkits, and more connections and disconnections for testing circuits and recently to untoolkits, which aim to incorporate more off- modification. Since these circuits are built using only the-shelf parts. However, the standard mediums for circuit press-fit connections, breadboards are great for fast design and construction remain the breadboard, protoboard, prototyping but quite fragile as final products. Protoboards and printed circuit board (PCB). As an alternative, we are a more permanent solution in which components are introduce a method in which circuits are hand-made on soldered down to a board that is precut with a grid of holes. ordinary paper substrates, connected with conductive foil The PCB is the most permanent solution, in which tape and off-the-shelf circuit components with the aim of components are soldered onto a pre-designed circuit board. supporting the durability, scalability, and accessibility Unlike breadboards and protoboards, PCBs also give users needs of novice and expert circuit builders alike. We also the freedom to arrange components spatially on the board used electrified notebooks to investigate how the circuit with the help of CAD software. Their digital nature also design and build process would be affected by the allows PCB designs to be easily checked by CAD, shared constraints and affordances of the bound book. Our ideas and replicated. However, the PCB design process requires and techniques were evaluated through a series of users to wait for the board to be fabricated—which can take workshops, through which we found our methods supported a few hours to a few days—before designs can be tested. a wide variety of approaches and results—both technical Once produced, PCBs are difficult to modify, making this and expressive— to electronics design and construction. process ideal for amplification but slow and inconvenient for prototyping purposes. Author Keywords An interesting alternative approach to prototyping and Paper computing; toolkits; sketchbooks; circuit prototyping. building circuits is ugly construction, in which circuit components are soldered directly to each other in mid-air ACM Classification Keywords over a rigid ground board [22]. This method allows J.5 Arts and Humanities creators to spatially arrange their components, create permanent circuits, and test their creations immediately. INTRODUCTION However, the circuit connections are often unclear because More and more communities are becoming interested in these three-dimensional circuits are difficult to plan and creating their own hardware, as the tools of design and tend to be constructed organically. In addition, the exposed application space of electronics become more diverse and component leads make short circuits very common. accessible. Despite advances in the technology itself, the In this paper, we introduce an alternative method in which standard mediums people use to design and build circuits are hand-made on paper substrates with conductive electronics remains largely the same: the breadboard, the foil tape and off-the-shelf circuit components. This process incorporates the tinkerability and immediate feedback of Paste the appropriate copyright/license statement here. ACM now breadboards, protoboards and ugly construction. It also • ACM copyright: ACM holds the copyright on the work. This is the allows users to visually and spatially lay out their circuit as historical approach. with PCBs. Paper as a circuit substrate also affords all the • License: The author(s) retain copyright, but ACM receives an exclusive publication license. qualities of any other paper-based craft. For example, users • Open Access: The author(s) wish to pay for the work to be open can sketch and annotate, cut and fold, digitally scan, or access. The additional fee must be paid to ACM. even bind their circuits into books for archival. In addition This text field is large enough to hold the appropriate release statement to exploring the techniques on paper, we also investigate assuming it is single-spaced in TimesNewRoman 8 point font. Please do how building circuits in book form through electrified not change or modify the size of this text box. sketchbooks—recalling the process of traditional sketching—affects the circuit design process and resulting researching methods for preserving the physical book form artifacts. while augmenting them with electronic qualities. In addition to [17], many have integrated digital features to the RELATED WORK This work builds upon a body of research most notably traditional book format, allowing users to remotely centered around the concept of untoolkits [13], materials communicate through book interfaces [5], interact with approaches to building circuits on paper, and electronically sound while reading a story [1], and connect a physical book to a web interface [21]. Others have looked augmented books. specifically at how digital features can help note-taking through augmented notebooks [10] and [11]. Workshops Untoolkits Given the growing research in non-traditional approaches to [18] and [6] have also emerged to both preserve and guide building electronics, many researchers are now looking at the evolution of physical books in this increasingly incorporating more off-the-shelf and existing components electronic and digital age. In our work, we are similarly and materials, the untoolkit approach, to make these inspired to analyze the affordances of the physical book, techniques more accessible and reach more diverse especially in the note-taking and design aspect, and transfer audiences. From a craft perspective, squishy circuits [9] is a this to the process of circuit building. circuitry sculpting technique using conductive modeling clay and Perner-Wilson [15] systematically studied a METHOD FOR MAKING PAPER CIRCUITS variety of traditional craft practices, to see how existing The following process summarizes a flexible and hand- materials and techniques could be applied to circuit made approach to building circuits on paper using off-the- building. Mellis et. al. [13] used off-the-shelf shelf electronic components and common household microcontrollers, traditional craft materials, conductive ink supplies (Figure 1). and open hardware and software tools to create an approach to circuit building that is friendly to new circuit builders by relying on familiar craft techniques. In Invent-Abling [8], soft circuit kits were designed to be as simple and bare as possible, to encourage users to incorporate other local materials. Finally, the MakeyMakey kit [12] is a board that specifically requires users to find common materials to complete the circuit-building activity. Inspired by these approaches, we designed our method to incorporate materials that are familiar and easy to use and off-the shelf for accessibility. Building circuits on paper There have also been many explorations of how to incorporate circuits with paper from a materials perspective. Some approach this challenge through materials science investigations on new conductive inks for drawn [18], printed [10] and painted [2] circuits. Others, in addition to the examples mentioned above, have looked at repurposing existing materials for circuit building. [3] is a toolkit of Figure 1. Method for making basic paper circuit: Plan magnetic circuit boards that cling to conductive painted the circuit, place conductive traces, connect components, traces, [17] looks at a variety of industrial shielding and add power. materials for electronically interactive pop-up scenes on paper, and [4] even embeds circuit elements within the pulp Plan the Circuit (optional) during the paper making process. While these were Decide where components will be organized on the page, techniques for handmade circuits, [14] presents a method and trace the component footprints. It is helpful to label for CNC vinyl-cutting copper foil tape to create circuit these footprints with their functionality and pinouts. Then boards and [20] presents digital design tools for making draw lines to indicate the necessary electronic connections. electronically interactive paper-based artifacts. These Using multiple colors helps keep traces organized. To techniques and explorations show the wide variety of connect external components to the page, draw traces to the existing and emerging material and techniques that page edge for alligator clips to attach. integrate circuits with paper. Add foil traces Electrified Books Cover the drawn traces with conductive foil tape. Make Finally, despite the growing trend in digitization, alligator clip pads for external components by folding researchers have become increasingly interested in conductive foil over the edge of the page. Connect multiple bridges, or even covering entire networks of traces with a foil pieces by soldering or folding over the end of the foil sheet of paper to create a new layer of blank space. and taping metal surface to metal surface. Connections made by simply sticking two foil tapes together, even those PAPER CIRCUITS WORKSHOPS with conductive
Recommended publications
  • Electronic Circuit Design and Component Selecjon
    Electronic circuit design and component selec2on Nan-Wei Gong MIT Media Lab MAS.S63: Design for DIY Manufacturing Goal for today’s lecture • How to pick up components for your project • Rule of thumb for PCB design • SuggesMons for PCB layout and manufacturing • Soldering and de-soldering basics • Small - medium quanMty electronics project producMon • Homework : Design a PCB for your project with a BOM (bill of materials) and esMmate the cost for making 10 | 50 |100 (PCB manufacturing + assembly + components) Design Process Component Test Circuit Selec2on PCB Design Component PCB Placement Manufacturing Design Process Module Test Circuit Selec2on PCB Design Component PCB Placement Manufacturing Design Process • Test circuit – bread boarding/ buy development tools (breakout boards) / simulaon • Component Selecon– spec / size / availability (inventory! Need 10% more parts for pick and place machine) • PCB Design– power/ground, signal traces, trace width, test points / extra via, pads / mount holes, big before small • PCB Manufacturing – price-Mme trade-off/ • Place Components – first step (check power/ground) -- work flow Test Circuit Construc2on Breadboard + through hole components + Breakout boards Breakout boards, surcoards + hookup wires Surcoard : surface-mount to through hole Dual in-line (DIP) packaging hap://www.beldynsys.com/cc521.htm Source : hap://en.wikipedia.org/wiki/File:Breadboard_counter.jpg Development Boards – good reference for circuit design and component selec2on SomeMmes, it can be cheaper to pair your design with a development
    [Show full text]
  • Analog Integrated Circuit Design, 2Nd Edition
    ffirs.fm Page iv Thursday, October 27, 2011 11:41 AM ffirs.fm Page i Thursday, October 27, 2011 11:41 AM ANALOG INTEGRATED CIRCUIT DESIGN Tony Chan Carusone David A. Johns Kenneth W. Martin John Wiley & Sons, Inc. ffirs.fm Page ii Thursday, October 27, 2011 11:41 AM VP and Publisher Don Fowley Associate Publisher Dan Sayre Editorial Assistant Charlotte Cerf Senior Marketing Manager Christopher Ruel Senior Production Manager Janis Soo Senior Production Editor Joyce Poh This book was set in 9.5/11.5 Times New Roman PSMT by MPS Limited, a Macmillan Company, and printed and bound by RRD Von Hoffman. The cover was printed by RRD Von Hoffman. This book is printed on acid free paper. Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship. Copyright © 2012 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.
    [Show full text]
  • MOSFET Operation Lecture Outline
    97.398*, Physical Electronics, Lecture 21 MOSFET Operation Lecture Outline • Last lecture examined the MOSFET structure and required processing steps • Now move on to basic MOSFET operation, some of which may be familiar • First consider drift, the movement of carriers due to an electric field – this is the basic conduction mechanism in the MOSFET • Then review basic regions of operation and charge mechanisms in MOSFET operation 97.398*, Physical Electronics: David J. Walkey Page 2 MOSFET Operation (21) Drift • The movement of charged particles under the influence of an electric field is termed drift • The current density due to conduction by drift can be written in terms of the electron and hole velocities vn and vp (cm/sec) as =+ J qnvnp qpv • This relationship is general in that it merely accounts for particles passing a certain point with a given velocity 97.398*, Physical Electronics: David J. Walkey Page 3 MOSFET Operation (21) Mobility and Velocity Saturation • At low values of electric field E, the carrier velocity is proportional to E -the proportionality constant is the mobility µ • At low fields, the current density can therefore be written Jqn= µ qpµ !nE+!p E v n v p • At high E, scattering limits the velocity to a maximum value and the relationship above no longer holds - this is termed velocity saturation 97.398*, Physical Electronics: David J. Walkey Page 4 MOSFET Operation (21) Factors Influencing Mobility • The value of mobility (velocity per unit electric field) is influenced by several factors – The mechanisms of conduction through the valence and conduction bands are different, and so the mobilities associated with electrons and holes are different.
    [Show full text]
  • A General CAD Concept and Design Framework Architecture for Integrated Microsystems^
    Transactions on the Built Environment vol 12, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509 A general CAD concept and design framework architecture for integrated microsystems^ A. Poppe," J.M. Kararn,*) K. Hoffmann," M. Rencz/ B. Courtois,^ M. Glesner/V. Szekely" "Technical University of Budapest, Department of Electron Devices, H-1521 Budapest, Hungary *77M4/77MC, 46 av. F ^bZ/eA F-J&OJ7 GrgMo6/g Ce^x, France *THDarmstadt, Institute of Microelectronic Systems, D-64283 Darmstadt, Germany Abstract Besides foundry facilities, CAD-tools are also required to move microsystems from research prototypes to an industrial market. CAD tools of microelectronics have been developed for more than 20 years, both in the field of circuit design tools and in the area of TCAD tools. Usually a microelectronics engineer is involved only in one side of the design: either he deals with application design or he is par- ticipating in the manufacturing design, but not in both. This is one point that is to be followed in case of microsystem design, if higher level of design productivity is expected. Another point is that certain standards should also be established in case of microsystem design too: based on selected technologies a set of stan- dard components should be pre-designed and collected in a standard component library. This component library should be available from within microsystem de- sign frameworks which might be well established by a proper configuration and extension of existing 1C design frameworks. A very important point is the devel- opment of proper simulation models of microsystem components that are based on e.g.
    [Show full text]
  • Circuit System Design Cards: a System Design Methodology for Circuits Courses Based on Thévenin Equivalents Neil E
    Circuit System Design Cards: a system design methodology for circuits courses based on Thévenin equivalents Neil E. Cotter, Member, IEEE, and Cynthia Furse, Fellow, IEEE Abstract—The Circuit System Design cards described here signal being processed in the system design is the Thévenin allow students to design complete circuits with sensors and op- equivalent voltage rather than the circuit output voltage per se. amps by laying down a sequence of cards. The cards teach Furthermore, the Thévenin equivalent may be extended from students several important concepts: system design, Thevénin one card to the next, moving left-to-right, with pre-calculated equivalents, input/output resistance, and op-amp formulas. formulas. Students may design circuits by viewing them as combinations of system building blocks portrayed on one side of the cards. The This paper discusses how the cards are used and the theory other side of each card shows a circuit schematic for the building on which they are based. The next section discusses one card block. Thevénin equivalents are the crucial ingredient in tying in detail, and the following section discusses a two-card the circuits to the building blocks and vice versa. system. The final sections catalog the symbols incorporated on the cards and the entire set of card images. Index Terms—Linear, circuit, system design, cards, Thevénin equivalent II ONE-CARD EXAMPLE I INTRODUCTION One side of each CSD card shows a system view of how the card processes its input signal. Fig. 1(a) shows the system HE deck of 32 Circuit System Design (CSD) cards allows side of the Voltage Reference card that produces an output users to design complete circuits by laying down cards in T voltage, v , from a power supply voltage, V .
    [Show full text]
  • Fundamentals of MOSFET and IGBT Gate Driver Circuits
    Application Report SLUA618A–March 2017–Revised October 2018 Fundamentals of MOSFET and IGBT Gate Driver Circuits Laszlo Balogh ABSTRACT The main purpose of this application report is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Therefore, it should be of interest to power electronics engineers at all levels of experience. The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special section deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications. For more information, see the Overview for MOSFET and IGBT Gate Drivers product page. Several, step-by-step numerical design examples complement the application report. This document is also available in Chinese: MOSFET 和 IGBT 栅极驱动器电路的基本原理 Contents 1 Introduction ................................................................................................................... 2 2 MOSFET Technology ......................................................................................................
    [Show full text]
  • The Transistor
    Chapter 1 The Transistor The searchfor solid-stateamplification led to the inventionof the transistor. It was immediatelyrecognized that majorefforts would be neededto understand transistorphenomena and to bring a developedsemiconductor technology to the marketplace.There followed a periodof intenseresearch and development, duringwhich manyproblems of devicedesign and fabrication, impurity control, reliability,cost, and manufacturabilitywere solved.An electronicsrevolution resulted,ushering in the eraof transistorradios and economicdigital computers, alongwith telecommunicationssystems that hadgreatly improved performance and that were lower in cost. The revolutioncaused by the transistoralso laid the foundationfor the next stage of electronicstechnology-that of silicon integratedcircuits, which promised to makeavailable to a massmarket infinitely more complexmemory and logicfunctions that could be organizedwith the aid of softwareinto powerfulcommunications systems. I. INVENTION OF THE TRANSISTOR 1.1 Research Leading to the Invention As World War II was drawing to an end, the research management of Bell Laboratories, led by then Vice President M. J. Kelly (later president of Bell Laboratories), was formulating plans for organizing its postwar basic research activities. Solid-state physics, physical electronics, and mi­ crowave high-frequency physics were especially to be emphasized. Within the solid-state domain, the decision was made to commit major research talent to semiconductors. The purpose of this research activity, according
    [Show full text]
  • How to Select a Capacitor for Power Supplies
    CAPACITOR FUNDAMENTALS 301 HOW TO SELECT A CAPACITOR FOR POWER SUPPLIES 1 Capacitor Committee Upcoming Events PSMA Capacitor Committee Website, Old Fundamentals Webinars, Training Presentations and much more – https://www.psma.com/technical-forums/capacitor Capacitor Workshop “How to choose and define capacitor usage for various applications, wideband trends, and new technologies” The day before APEC, Saturday March 14 from 7:00AM to 6:00PM Capacitor Industry Session as part of APEC “Capacitors That Stand Up to the Mission Profiles of the Future – eMobility, Broadband” Tuesday March 17, 8:30AM to Noon in New Orleans Capacitor Roadmap Webinar – Timing TBD – Latest in Research and Technology Additional info here. Short Introduction of Today‘s Presenter Eduardo Drehmer Director of Marketing FILM Capacitors Background: • Over 20 years experience with knowledge on +1 732 319 1831 Manufacturing, Quality and Application of Electronic Components. [email protected] • Responsible for Technical Marketing for Film Capacitors www.tdk.com 2018-09-25 StM Short Introduction of Today‘s Presenter Edward Lobo was born in Acushnet, MA in 1943 and graduated from the University of Massachusetts in Amherst in 1967 with a BS in Chemistry. Ed worked for Magnetek, Aerovox and CDE where he is currently Chief Engineer for New Product Development. Ed Lobo Ed has served for over 52 years in Chief Engineer, New Product capacitor product development. He holds [email protected] 14 US patents involving capacitors. 4 ABSTRACT This presentation will guide individuals selecting components for their Electronic Power Supplies. Capacitors come in a wide variety of technologies, and each offers specific benefits that should be considered when designing a Power Supply circuit.
    [Show full text]
  • Power MOSFET Basics by Vrej Barkhordarian, International Rectifier, El Segundo, Ca
    Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Breakdown Voltage......................................... 5 On-resistance.................................................. 6 Transconductance............................................ 6 Threshold Voltage........................................... 7 Diode Forward Voltage.................................. 7 Power Dissipation........................................... 7 Dynamic Characteristics................................ 8 Gate Charge.................................................... 10 dV/dt Capability............................................... 11 www.irf.com Power MOSFET Basics Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Discrete power MOSFETs Source Field Gate Gate Drain employ semiconductor Contact Oxide Oxide Metallization Contact processing techniques that are similar to those of today's VLSI circuits, although the device geometry, voltage and current n* Drain levels are significantly different n* Source t from the design used in VLSI ox devices. The metal oxide semiconductor field effect p-Substrate transistor (MOSFET) is based on the original field-effect Channel l transistor introduced in the 70s. Figure 1 shows the device schematic, transfer (a) characteristics and device symbol for a MOSFET. The ID invention of the power MOSFET was partly driven by the limitations of bipolar power junction transistors (BJTs) which, until recently, was the device of choice in power electronics applications. 0 0 V V Although it is not possible to T GS define absolutely the operating (b) boundaries of a power device, we will loosely refer to the I power device as any device D that can switch at least 1A. D The bipolar power transistor is a current controlled device. A SB (Channel or Substrate) large base drive current as G high as one-fifth of the collector current is required to S keep the device in the ON (c) state. Figure 1. Power MOSFET (a) Schematic, (b) Transfer Characteristics, (c) Also, higher reverse base drive Device Symbol.
    [Show full text]
  • Design for Manufacturability and Reliability in Extreme-Scaling VLSI
    SCIENCE CHINA Information Sciences . REVIEW . June 2016, Vol. 59 061406:1–061406:23 Special Focus on Advanced Microelectronics Technology doi: 10.1007/s11432-016-5560-6 Design for manufacturability and reliability in extreme-scaling VLSI Bei YU1,2 , Xiaoqing XU2 , Subhendu ROY2,3 ,YiboLIN2, Jiaojiao OU2 &DavidZ.PAN2 * 1CSE Department, The Chinese University of Hong Kong, NT Hong Kong, China; 2ECE Department, University of Texas at Austin, Austin, TX 78712,USA; 3Cadence Design Systems, Inc., San Jose, CA 95134,USA Received December 14, 2015; accepted January 18, 2016; published online May 6, 2016 Abstract In the last five decades, the number of transistors on a chip has increased exponentially in accordance with the Moore’s law, and the semiconductor industry has followed this law as long-term planning and targeting for research and development. However, as the transistor feature size is further shrunk to sub-14nm nanometer regime, modern integrated circuit (IC) designs are challenged by exacerbated manufacturability and reliability issues. To overcome these grand challenges, full-chip modeling and physical design tools are imperative to achieve high manufacturability and reliability. In this paper, we will discuss some key process technology and VLSI design co-optimization issues in nanometer VLSI. Keywords design for manufacturability, design for reliability, VLSI CAD Citation Yu B, Xu X Q, Roy S, et al. Design for manufacturability and reliability in extreme-scaling VLSI. Sci China Inf Sci, 2016, 59(6): 061406, doi: 10.1007/s11432-016-5560-6 1 Introduction Moore’s law, which is named after Intel co-founder Gordon Moore, predicts that the density of transistor on integrated circuits (ICs) roughly doubles every two years.
    [Show full text]
  • Electronics and Computer Technology
    Electronics and Computer Technology The Electronics and Computer Technology Department offers several concentrations in electronics and computer technology that are designed to prepare students for a variety of high-tech job/career opportunities in the fields of engineering and technology; electronics technology; computer technology; telecommunication technology; and related technologies. The Electronics and Computer Technology Department offers an associate degree program in engineering technology with an emphasis in electronics, computers, and telecommunications. Technology certificates offered in areas of specialization include: electronics technology, computer technology, telecommunication technology, networking technology, electronic communication technology, and industrial electronics technology. Certificates/certifications offered in specific areas of electronics, computers, and related technology include: Certified Electronics Technician (Associate CET), A+ Certified Computer Service Technician, N+ Certified Networking Technician, CISCO Certified Network Associate (CCNA), CISCO Certified Network Professional (CCNP), Microsoft Certified Systems Engineer (MCSE), Certified Fiber Optics Installer, (FOIC), Electronics Communications (WCM, FCC license) and Digital and Microprocessor Electronics. Career Opportunities Electronics Engineering Technologist, Computer Engineering Technologist, Network Engineering Technologist, Telecommunications Engineering Technologist, Certified Electronics Technician - CET, A+ Certified Computer Technician,
    [Show full text]
  • SI Series Snap-In Elctrolytic Capacitors | NTE Electronics, Inc
    SNAP−IN MOUNT ALUMINUM ELECTROLYTIC SI SERIES SUBMINIATURE MECHANICAL SPECIFICATIONS (SI: Snap−in) Marking: The SI Snap−in series subminiature aluminum electrolytic ca- Consists of series type, nominal capacitance, rated pacitors are especially suitable for applications requiring high ca- voltage, temperature range, anode and/or cathode pacitance, low cost, and very small size. In fact, you’ll find these identification, vendor identification. capacitors in some of the most demanding applications, from Recommended Cleaning Solvents: precision medical electronics and automobiles to the newest personal computers and disk drives. Chlorofluorocarbon solvents used to remove flux from They operate over a broad temperature range and are available printed circuit boards can penetrate the capacitor end− in either blister pack or bulk. seals, cause corrosion when voltage is applied and ca- pacitor failure. Avoid halogenated solvents and consid- RATINGS er these alternatives: Clean the capacitors with Capacitance Range: 47µf to 33,000µf water/detergent or cleaning solvents free of halogen Tolerance: ±20% groups such as alcohol or terpene solution, or mount the capacitor after board cleaning. Voltage Range: 16V to 450V PERFORMANCE SPECIFICATIONS CASE SIZE AND DIMENSIONS: Operating Temperature Range: −40°C to +85°C (−40°F to +185°F) Leakage Current: I ≤ 3 x √CV (measured after 5 minutes @ rated voltage and +20°C (+68°F) I = Leakage Current (µA) C = Nominal Capacitance (µf) V = Rated Voltage (V) Capacitance Tolerance (M): ±20% measured at +20°C (+68°F),
    [Show full text]