Ferromagnetism Institute of Solid State Physics Technische Universität Graz Ferromagnetism

Total Page:16

File Type:pdf, Size:1020Kb

Ferromagnetism Institute of Solid State Physics Technische Universität Graz Ferromagnetism Ferromagnetism Institute of Solid State Physics Technische Universität Graz Ferromagnetism Below a critical temperature (called the Curie temperature) a magnetization spontaneously appears in a ferromagnet even in the absence of a magnetic field. Iron, nickel, and cobalt are ferromagnetic. Ferromagnetism overcomes the magnetic dipole-dipole interactions. Is arises from the Coulomb interactions of the electrons. The energy that is gained when the spins align is called the exchange energy. Mean field theory (Molekularfeldtheorie) Heisenberg Hamiltonian H JSSij, i j g BBS i ij, i Exchange energy Mean field approximation H MFSJS i i, g B B i sums over the neighbors of spin i Looks like a magnetic field B 1 MF BJSMF i, g B N M gS magnetization B V eliminate <S> Mean field theory V BzJMMF 22 Ng B z is the number of nearest neighbors In mean field, the energy of the spins is 1 Eg ()BB 2 B MF a We calculated the populations of the spins in the paramagnetism section Spin populations NBkTexp( / ) 1 B NBkTBkTexp( /BB ) exp( / ) NBkTexp( / ) 2 B NBkTBkTexp( /BB ) exp( / ) MNN()12 exp(B /kT ) exp( B / kT ) N BB exp(B /kTBB ) exp( B / kT ) B N tanh kTB Mean field theory 1 N gB BMFa B Mg B tanh 22VkTB For zero applied field Tc M MM S tanh TMs Nz MgSB and TJ c 24VkB Ms = saturation magnetization Tc = Curie temperature Mean field theory Tc M MM S tanh TMs m m tanh t Experimental points for Ni. Ferromagnetism Material Curie temp. (K) Co 1388 Fe 1043 FeOFe2O3 858 NiOFe2O3 858 CuOFe2O3 728 MgOFe2O3 713 MnBi 630 Ni 627 MnSb 587 MnOFe2O3 573 Y3Fe5O12 560 CrO2 386 MnAs 318 Gd 292 Dy 88 EuO 69 Electrical insulator Nd2Fe14B 353 Ms = 10 Ms(Fe) Sm2Co17 700 rare earth magnets Curie - Weiss law 1 N gB BMFa B V Mg tanh BzJMMF B Ng 22 22VkTB B Above Tc we can expand the hyperbolic tangent tanh(xx ) for x 1 1 22 NV Mg B 22zJM Ba 4 VkBB T Ng Solve for M 22 gN B Ba z M TJc 4VkB T Tc 4k B dM C Curie Weiss Law dH T Tc Critical fluctuations near Tc Ferromagnets are paramagnetic above Tc Ferromagnetic Paramagnetic Critical fluctuations near Tc. Magnetic ordering Ferromagnetism Ferrimagnetism Antiferromagnetism Helimagnetism All ordered magnetic states have excitations called magnons Ferrimagnets Magnetite Fe3O4 (Magneteisen) . Ferrites MO Fe2O3 M = Fe, Zn, Cd, Ni, Cu, Co, Mg MgAl2O4 Two sublattices A and B. Spinel crystal structure XY2O4 8 tetrahedral sites A (surrounded by 4 O) 5B 16 octahedral sites B (surrounded by 6 O) 9B per unit cell Ferrimagnets Magnetite Fe3O4 . Ferrites MO Fe2O3 M = Fe, Zn, Cd, Ni, Cu, Co, Mg Exchange integrals JAA, JAB, and JBB are all negative (antiparallel preferred) |JAB| > |JAA|,|JBB| Mean field theory Heisenberg Hamiltonian H JSSij, i j g B B S i ij, i Exchange energy Mean field approximation 11 BJSJSMFA,, iAB B iAA , A ggBB 11 BJSJSMFB,, iAB A iBB , B ggBB N N M A gS BA M gS V B BBV Mean field theory The spins can take on two energies. These energies are different on the A sites and B because the A spins see a different environment1 as the B spins. 1 Eg ()BB Eg ()BB A 2 BMFAa, B 2 BMFBa, Calculate the average magnetization with Boltzmann factors: BBMF, A a BBMF, B a MN tanh MN tanh A kT B kT B B 00ABBMMB AAA ac MMAsA , tanh kTB 00ABAM BBBMB a MMBsB , tanh kTB -4 Ferrimagnetism gauss = 10 T oersted = 10-4/4x10-7 A/ Kittel D. Gignoux, magnetic properties of Metallic systems Antiferromagnetism Negative exchange energy JAB < 0. At low temperatures, below the Neel temperature TN, the spins are aligned antiparallel and the macroscopic magnetization is zero. Spin ordering can be observed by neutron scattering. At high temperature antiferromagnets become paramagnetic. The macroscopic magnetization is zero and the spins are disordered in zero field. MMAB C Curie-Weiss 0 Ba T temperature Antiferromagnetism Average spontaneous magnetization is zero at all temperatures. from Kittel.
Recommended publications
  • Canted Ferrimagnetism and Giant Coercivity in the Non-Stoichiometric
    Canted ferrimagnetism and giant coercivity in the non-stoichiometric double perovskite La2Ni1.19Os0.81O6 Hai L. Feng1, Manfred Reehuis2, Peter Adler1, Zhiwei Hu1, Michael Nicklas1, Andreas Hoser2, Shih-Chang Weng3, Claudia Felser1, Martin Jansen1 1Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany 2Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, D-14109, Germany 3National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan Abstract: The non-stoichiometric double perovskite oxide La2Ni1.19Os0.81O6 was synthesized by solid state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. La2Ni1.19Os0.81O6 crystallizes in the monoclinic double perovskite structure (general formula A2BB’O6) with space group P21/n, where the B site is fully occupied by Ni and the B’ site by 19 % Ni and 81 % Os atoms. Using x-ray absorption spectroscopy an Os4.5+ oxidation state was established, suggesting presence of about 50 % 5+ 3 4+ 4 paramagnetic Os (5d , S = 3/2) and 50 % non-magnetic Os (5d , Jeff = 0) ions at the B’ sites. Magnetization and neutron diffraction measurements on La2Ni1.19Os0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear Ni2+ spin chains extending along the c axis but a non-collinear spin alignment within the ab plane. The magnetization curve of La2Ni1.19Os0.81O6 features a hysteresis with a very high coercive field, HC = 41 kOe, at T = 5 K, which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder.
    [Show full text]
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Deciphering Structural and Magnetic Disorder in the Chiral Skyrmion Host Materials Coxznymnz (X + Y + Z = 20)
    Deciphering structural and magnetic disorder in the chiral skyrmion host materials CoxZnyMnz (x + y + z = 20) Joshua D. Bocarsly,1, ∗ Colin Heikes,2 Craig M. Brown,2 Stephen D. Wilson,1 and Ram Seshadri1 1Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States 2Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States (Dated: January 9, 2019) CoxZnyMnz (x + y + z = 20) compounds crystallizing in the chiral β-Mn crystal structure are known to host skyrmion spin textures even at elevated temperatures. As in other chiral cubic skyrmion hosts, skyrmion lattices in these materials are found at equilibrium in a small pocket just below the magnetic Curie temperature. Remarkably, CoxZnyMnz compounds have also been found to host metastable non-equilibrium skyrmion lattices in a broad temperature and field range, including down to zero-field and low temperature. This behavior is believed to be related to disorder present in the materials. Here, we use neutron and synchrotron diffraction, density functional theory calculations, and DC and AC magnetic measurements, to characterize the atomic and magnetic disorder in these materials. We demonstrate that Co has a strong site-preference for the diamondoid 8c site in the crystal structure, while Mn tends to share the geometrically frustrated 12d site with Zn, due to its ability to develop a large local moment on that site. This magnetism-driven site specificity leads to distinct magnetic behavior for the Co-rich 8c sublattice and the Mn on the 12d sublattice. The Co-rich sublattice orders at high temperatures (compositionally tunable between 210 K and 470 K) with a moment around 1 µB /atom and maintains this order to low temperature.
    [Show full text]
  • Chapter 6 Antiferromagnetism and Other Magnetic Ordeer
    Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD February 2007 1 1 Molecular Field Theory of Antiferromagnetism 2 equal and oppositely-directed magnetic sublattices 2 Weiss coefficients to represent inter- and intra-sublattice interactions. HAi = n’WMA + nWMB +H HBi = nWMA + n’WMB +H Magnetization of each sublattice is represented by a Brillouin function, and each falls to zero at the critical temperature TN (Néel temperature) Sublattice magnetisation Sublattice magnetisation for antiferromagnet TCD February 2007 2 Above TN The condition for the appearance of spontaneous sublattice magnetization is that these equations have a nonzero solution in zero applied field Curie Weiss ! C = 2C’, P = C’(n’W + nW) TCD February 2007 3 The antiferromagnetic axis along which the sublattice magnetizations lie is determined by magnetocrystalline anisotropy Response below TN depends on the direction of H relative to this axis. No shape anisotropy (no demagnetizing field) TCD February 2007 4 Spin Flop Occurs at Hsf when energies of paralell and perpendicular configurations are equal: HK is the effective anisotropy field i 1/2 This reduces to Hsf = 2(HKH ) for T << TN Spin Waves General: " n h q ~ q ! M and specific heat ~ Tq/n Antiferromagnet: " h q ~ q ! M and specific heat ~ Tq TCD February 2007 5 2 Ferrimagnetism Antiferromagnet with 2 unequal sublattices ! YIG (Y3Fe5O12) Iron occupies 2 crystallographic sites one octahedral (16a) & one tetrahedral (24d) with O ! Magnetite(Fe3O4) Iron again occupies 2 crystallographic sites one tetrahedral (8a – A site) & one octahedral (16d – B site) 3 Weiss Coefficients to account for inter- and intra-sublattice interaction TCD February 2007 6 Below TN, magnetisation of each sublattice is zero.
    [Show full text]
  • Room-Temperature Helimagnetism in Fege Thin Films S
    www.nature.com/scientificreports OPEN Room-temperature helimagnetism in FeGe thin films S. L. Zhang1, I. Stasinopoulos 2, T. Lancaster3, F. Xiao3, A. Bauer4, F. Rucker4, A. A. Baker1,5, A. I. Figueroa 5, Z. Salman 6, F. L. Pratt7, S. J. Blundell1, T. Prokscha 6, A. Suter6, J. 8 8,9 2,10 5 4 1 Received: 8 November 2016 Waizner , M. Garst , D. Grundler , G. van der Laan , C. Pfleiderer & T. Hesjedal Accepted: 14 February 2017 Chiral magnets are promising materials for the realisation of high-density and low-power spintronic Published: xx xx xxxx memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii- Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain αintr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.
    [Show full text]
  • Coexistence of Superparamagnetism and Ferromagnetism in Co-Doped
    Available online at www.sciencedirect.com ScienceDirect Scripta Materialia 69 (2013) 694–697 www.elsevier.com/locate/scriptamat Coexistence of superparamagnetism and ferromagnetism in Co-doped ZnO nanocrystalline films Qiang Li,a Yuyin Wang,b Lele Fan,b Jiandang Liu,a Wei Konga and Bangjiao Yea,⇑ aState Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People’s Republic of China bNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People’s Republic of China Received 8 April 2013; revised 5 August 2013; accepted 6 August 2013 Available online 13 August 2013 Pure ZnO and Zn0.95Co0.05O films were deposited on sapphire substrates by pulsed-laser deposition. We confirm that the magnetic behavior is intrinsic property of Co-doped ZnO nanocrystalline films. Oxygen vacancies play an important mediation role in Co–Co ferromagnetic coupling. The thermal irreversibility of field-cooling and zero field-cooling magnetizations reveals the presence of superparamagnetic behavior in our films, while no evidence of metallic Co clusters was detected. The origin of the observed superparamagnetism is discussed. Ó 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Dilute magnetic semiconductors; Superparamagnetism; Ferromagnetism; Co-doped ZnO Dilute magnetic semiconductors (DMSs) have magnetic properties in this system. In this work, the cor- attracted increasing attention in the past decade due to relation between the structural features and magnetic their promising technological applications in the field properties of Co-doped ZnO films was clearly of spintronic devices [1]. Transition metal (TM)-doped demonstrated. ZnO is one of the most attractive DMS candidates The Zn0.95Co0.05O films were deposited on sapphire because of its outstanding properties, including room- (0001) substrates by pulsed-laser deposition using a temperature ferromagnetism.
    [Show full text]
  • Solid State Physics 2 Lecture 5: Electron Liquid
    Physics 7450: Solid State Physics 2 Lecture 5: Electron liquid Leo Radzihovsky (Dated: 10 March, 2015) Abstract In these lectures, we will study itinerate electron liquid, namely metals. We will begin by re- viewing properties of noninteracting electron gas, developing its Greens functions, analyzing its thermodynamics, Pauli paramagnetism and Landau diamagnetism. We will recall how its thermo- dynamics is qualitatively distinct from that of a Boltzmann and Bose gases. As emphasized by Sommerfeld (1928), these qualitative di↵erence are due to the Pauli principle of electons’ fermionic statistics. We will then include e↵ects of Coulomb interaction, treating it in Hartree and Hartree- Fock approximation, computing the ground state energy and screening. We will then study itinerate Stoner ferromagnetism as well as various response functions, such as compressibility and conduc- tivity, and screening (Thomas-Fermi, Debye). We will then discuss Landau Fermi-liquid theory, which will allow us understand why despite strong electron-electron interactions, nevertheless much of the phenomenology of a Fermi gas extends to a Fermi liquid. We will conclude with discussion of electrons on the lattice, treated within the Hubbard and t-J models and will study transition to a Mott insulator and magnetism 1 I. INTRODUCTION A. Outline electron gas ground state and excitations • thermodynamics • Pauli paramagnetism • Landau diamagnetism • Hartree-Fock theory of interactions: ground state energy • Stoner ferromagnetic instability • response functions • Landau Fermi-liquid theory • electrons on the lattice: Hubbard and t-J models • Mott insulators and magnetism • B. Background In these lectures, we will study itinerate electron liquid, namely metals. In principle a fully quantum mechanical, strongly Coulomb-interacting description is required.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Study of Spin Glass and Cluster Ferromagnetism in Rusr2eu1.4Ce0.6Cu2o10-Δ Magneto Superconductor Anuj Kumar, R
    Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-δ magneto superconductor Anuj Kumar, R. P. Tandon, and V. P. S. Awana Citation: J. Appl. Phys. 110, 043926 (2011); doi: 10.1063/1.3626824 View online: http://dx.doi.org/10.1063/1.3626824 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v110/i4 Published by the American Institute of Physics. Related Articles Annealing effect on the excess conductivity of Cu0.5Tl0.25M0.25Ba2Ca2Cu3O10−δ (M=K, Na, Li, Tl) superconductors J. Appl. Phys. 111, 053914 (2012) Effect of columnar grain boundaries on flux pinning in MgB2 films J. Appl. Phys. 111, 053906 (2012) The scaling analysis on effective activation energy in HgBa2Ca2Cu3O8+δ J. Appl. Phys. 111, 07D709 (2012) Magnetism and superconductivity in the Heusler alloy Pd2YbPb J. Appl. Phys. 111, 07E111 (2012) Micromagnetic analysis of the magnetization dynamics driven by the Oersted field in permalloy nanorings J. Appl. Phys. 111, 07D103 (2012) Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 12 Mar 2012 to 14.139.60.97. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions JOURNAL OF APPLIED PHYSICS 110, 043926 (2011) Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-d magneto superconductor Anuj Kumar,1,2 R. P. Tandon,2 and V. P. S. Awana1,a) 1Quantum Phenomena and Application Division, National Physical Laboratory (CSIR), Dr.
    [Show full text]
  • Ferromagnetic State and Phase Transitions
    Ferromagnetic state and phase transitions Yuri Mnyukh 76 Peggy Lane, Farmington, CT, USA, e-mail: [email protected] (Dated: June 20, 2011) Evidence is summarized attesting that the standard exchange field theory of ferromagnetism by Heisenberg has not been successful. It is replaced by the crystal field and a simple assumption that spin orientation is inexorably associated with the orientation of its carrier. It follows at once that both ferromagnetic phase transitions and magnetization must involve a structural rearrangement. The mechanism of structural rearrangements in solids is nucleation and interface propagation. The new approach accounts coherently for ferromagnetic state and its manifestations. 1. Weiss' molecular and Heisenberg's electron Its positive sign led to a collinear ferromagnetism, and exchange fields negative to a collinear antiferromagnetism. Since then it has become accepted that Heisenberg gave a quantum- Generally, ferromagnetics are spin-containing materials mechanical explanation for Weiss' "molecular field": that are (or can be) magnetized and remain magnetized "Only quantum mechanics has brought about in the absence of magnetic field. This definition also explanation of the true nature of ferromagnetism" includes ferrimagnetics, antiferromagnetics, and (Tamm [2]). "Heisenberg has shown that the Weiss' practically unlimited variety of magnetic structures. theory of molecular field can get a simple and The classical Weiss / Heisenberg theory of straightforward explanation in terms of quantum ferromagnetism, taught in the universities and presented mechanics" (Seitz [1]). in many textbooks (e. g., [1-4]), deals basically with the special case of a collinear (parallel and antiparallel) spin arrangement. 2. Inconsistence with the reality The logic behind the theory in question is as follows.
    [Show full text]
  • Magnetism in Transition Metal Complexes
    Magnetism for Chemists I. Introduction to Magnetism II. Survey of Magnetic Behavior III. Van Vleck’s Equation III. Applications A. Complexed ions and SOC B. Inter-Atomic Magnetic “Exchange” Interactions © 2012, K.S. Suslick Magnetism Intro 1. Magnetic properties depend on # of unpaired e- and how they interact with one another. 2. Magnetic susceptibility measures ease of alignment of electron spins in an external magnetic field . 3. Magnetic response of e- to an external magnetic field ~ 1000 times that of even the most magnetic nuclei. 4. Best definition of a magnet: a solid in which more electrons point in one direction than in any other direction © 2012, K.S. Suslick 1 Uses of Magnetic Susceptibility 1. Determine # of unpaired e- 2. Magnitude of Spin-Orbit Coupling. 3. Thermal populations of low lying excited states (e.g., spin-crossover complexes). 4. Intra- and Inter- Molecular magnetic exchange interactions. © 2012, K.S. Suslick Response to a Magnetic Field • For a given Hexternal, the magnetic field in the material is B B = Magnetic Induction (tesla) inside the material current I • Magnetic susceptibility, (dimensionless) B > 0 measures the vacuum = 0 material response < 0 relative to a vacuum. H © 2012, K.S. Suslick 2 Magnetic field definitions B – magnetic induction Two quantities H – magnetic intensity describing a magnetic field (Système Internationale, SI) In vacuum: B = µ0H -7 -2 µ0 = 4π · 10 N A - the permeability of free space (the permeability constant) B = H (cgs: centimeter, gram, second) © 2012, K.S. Suslick Magnetism: Definitions The magnetic field inside a substance differs from the free- space value of the applied field: → → → H = H0 + ∆H inside sample applied field shielding/deshielding due to induced internal field Usually, this equation is rewritten as (physicists use B for H): → → → B = H0 + 4 π M magnetic induction magnetization (mag.
    [Show full text]
  • Band Ferromagnetism in Systems of Variable Dimensionality
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 11, November 2008, p.3058 - 3068 Band ferromagnetism in systems of variable dimensionality C. M. TEODORESCU*, G. A. LUNGU National Institute of Materials Physics, Atomistilor 105b, P.O. Box MG-7, RO-77125 Magurele-Ilfov, Romania The Stoner instability of the paramagnetic state, yielding to the occurence of ferromagnetism, is reviewed for electron density of states reflecting changes in the dimensionality of the system. The situations treated are one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) cases and also a special case where the density of states has a parabolic shape near the Fermi level, and is half-filled at equilibrium. We recover the basic results obtained in the original work of E.C. Stoner [Proc. Roy. Soc. London A 165, 372 (1938)]; also we demonstrate that in 1D and 2D case, whenever the Stoner criterion is satisfied, the system evolves spontaneously towards maximum polarization allowed by Hund's rules. For the 3D case, the situation is that: (i) when the Stoner criterion is satisfied, but the ratio between the Hubbard repulsion energy and the Fermi energy is between 4/3 and 3/2, the system evolves towards a ferromagnetic state with incomplete polarization (the polarization parameter is between 0 and 1); (ii) when , the system evolves towards maximum polarization. This situation was also recognized in the original paper of Stoner, but with no further analysis of the obtained polarizations nor comparison with experimental results. We apply the result of calculation in order to predict the Hubbard interaction energy.
    [Show full text]