Appendix 1: Seed Processing Table – Species List

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 1: Seed Processing Table – Species List Appendix 1: Seed Processing Table – Species List Table A.1. Seed processing table – species list Family/genus / Prevailing fruit type – species group description Extraction procedure Apocynaceae Dehiscent, dry, often long Drying will cause fruits to split ● Alstonia and slender double follicles open. Seeds fall out by ● Wrightia with many seeds themselves or with minimal ● Dyera mechanical impact Anacardiaceae Drupe with fleshy, often Depulping by ingestion or ● Spondias edible mesocarp. Mesocarp soaking followed by stirring or ● Dracontomelum fibrous in, e.g., Mangifera. high-water pressure, or ● Swintonia In Swintonia and Gluta mechanical depulping. Seeds ● Gluta drupes remain attached to a are not extracted from the ● Mangifera 5-winged placenta formed pyrene. Removal of wings not from persistent petals necessary as they will fall off during wet processing Araucariaceae Dehiscent cones, often large. Drying causes cone scale and ● Araucaria Disintegrate at maturity seeds to separate from the ● Agathis central cone axis. Cone scale removed by sifting and/or winnowing; fine cleaning by flotation Bignoniaceae Long slender dehiscent Sun-drying causes dehiscence. ● Marchamia follicles/pods – in some species Seeds usually fall off or out ● Fernandoa up to 80 cm. Winged seeds readily or with little mechanical ● Stereospermum attached to central columella impact. If extracted manually, ● Millingtonia fruits are discharged by the ● Spathodea same procedure Bombacaceae Large woody capsules. Dehiscent Dry extraction from fruit ● Bombax with woolly seeds in Bombax followed by removal of testa ● Ceiba and Ceiba; dry edible pulp in appendices. In Bombax and ● Coelostegia Adansonia. Indehiscent with Ceiba mechanical deflossing or ● Durio arillate seed in Durio burning of seed hair. In Durio ● Adansonia removal of aril by depulping procedures, e.g. high-water pressure or, in edible species, by soaking off the edible pulp. Hard pulp in Adansonia removed after soaking (Continued) 366 APPENDIX Table A.1. Seed processing table – species list––Cont’d. Family/genus / Prevailing fruit type – species group description Extraction procedure Boraginaceae 1 seeded drupe Pyrene extracted by wet ● Cordia extraction, e.g. high water pressure after softening Burseraceae Drupe with fleshy pulp and Wet extraction for removal ● Canarium hard endocarp containing of pulp, e.g. high-pressure ● Commiphora up to 3 seeds water after softening. Seeds ● Boswellia are not extracted from the pyrene Casuarinaceae Dry dehiscent multiple fruits, Drying makes fruits open. ● Casuarina ‘conelike’, spherical to oblong, Tumbling usually suffices to ● Allocasuarina opening by slots make seeds fall out. If trapped, ● Gymnostoma seeds can be extracted after disintegration of the whole fruit, e.g. threshing Celestraceae 3-valved woody capsule Drying until dehiscence, then ● Kokoona mechanical raking, shaking or tumbling to remove seeds Combretaceae Mostly dry winged fruits, in Extraction reduces storability ● Combretum Combretum with 4 angular and is generally avoided. To ● Terminatia wings, in Terminalia with 1 wing reduce bulk, fruits can be ● Anogeissus surrounding the seed (wing dewinged by rolling between much reduced in, e.g., wire-mesh screens. In T. catappa, making fruit Combretum seeds may be drupelike) extracted by manually splitting open the wings before sowing Cupressaceae Dehiscent cones with central Cone scales open upon drying ● Cupressus cone scales that open upon and seeds are released by gentle ● Fokienia drying tumbling. Usually no dewinging ● Libocedrus Datiscaceae Dehiscent capsules with Extraction by drying and ● Octomeles many seed shaking. The volume of fruits ● Tetrameles and that of seeds are always small and the tiny seeds easily spill out. To avoid loss, opened fruits can be shaken thoroughly manually in a pail with a closed lid and extracted through a fine masked sieve Dilleneaceae Dehiscent follicles making Fruits split open upon drying; ● Dillenea a star-formed compound fruit seeds extracted manually. surrounded by enlarged fleshy Fleshy sarcotesta removed sepals that split open at by wet extraction, e.g. high maturity water pressure or wet tumbling APPENDIX 367 Table A.1. Seed processing table – species list––Cont’d. Family/genus / Prevailing fruit type – species group description Extraction procedure Dipterocarpaceae Nuts with 2 or 4 (occassionally5) Manual removal of wings ● Anisoptera large wings originating from sometimes done to reduce bulk ● Dipterocarpus persistent sepals. Fruits contain and ease sowing. Sensitivity to ● Dryobalanops usually only 1 embryo. Fruits desiccation and their short ● Hopea usually large, including wings storability makes fast sowing ● Parashorea from 3–20 cm. Most species mandatory ● Shorea have desiccation-sensitive seed ● Vatica Ebenaceae Berry with persistent sepals and Fleshy pulp removed by normal ● Diospyros from 1 to a few seeds. Most wet extraction, e.g. water ● Euclea species with fleshy pulp, but pressure or wet tumbling. Dry species with dry pulp occur in fruits keep well when sun-dried. dry areas Pulp must usually be removed before sowing to remove germination inhibitors Euphorbiaceae Dehiscent capsules. Seeds In this group of euphorbia, ● Aleurites usually small seeds can be extracted by any ● Bridelia dry extraction procedure, i.e. ● Croton drying until dehiscence and ● Hevea tumbling or other mechanical ● Macaranga impact to separate fruits from ● Trewia seeds ● Clutia Euphorbiaceae Drupes or berries, usually Stones or seeds extracted wet ● Aleurites small, often with sticky, after softening by soaking or ● Bischofia milky pulp initiated decomposition. Bleach ● Drypetes or some mild liquid soap help ● Endospermum remove sticky residual pulp ● Trewia Fagaceae Nut with enclosing, dehiscent The dehiscent cupula in Fagus ● Castanopsis or open cupula. Usually large and Castanea open by slight ● Quercus drying. The cupula remain ● Fagus firmly attached to the fruit in ● Lithocarpus some Lithocarpus and Quercus ● Castanea species. Wetting and slight ● Nothofagus drying help soften the attachment, but many Fagaceae are desiccation-sensitive. Cupula must often be removed manually Guttiferae Callophyllum has a drupe fruit Wet or dry extraction for fleshy ● Calophyllum with fleshy/fibrous mesocarp. and dry fruits, respectively. ● Mesua The fruit in Cratoxylum is a Residual pulp of fleshy ● Cratoxylum woody capsule mesocarp removed by tumbling in sand or by brushing (Continued) 368 APPENDIX Table A.1. Seed processing table – species list––Cont’d. Family/genus / Prevailing fruit type – species group description Extraction procedure Hamamelidaceae Semidehiscent, casuarina-like, Apertures open upon drying ● Altingia compound, dry fruits, which and seeds may be extracted by ● Liquidambar open by apertures tumbling. If seeds are stuck inside the fruit, it is necessary to disintegrate the fruits, e.g. by threshing or in a hammer mill Juglandaceae Dry drupes or nuts, in Dry exocarp/mesocarp removed ● Carya Engelhardtia with wings manually or, for some species, ● Engelhardtia by tumbling in a cement mixer ● Juglans with abrasive material or in brushing machines with hard brushes Lauraceae Most genera with 1 to a few Fleshy pulp removed by wet ● Cinnamomum seeded berries. In Eusideroxylon extraction, e.g. high-pressure ● Cryptocarya fruits are large drupes (up to water after soaking. Some ● Eusideroxilon 15-cm long). In Cryptocarya species have fragile seed coats, ● Litsea fruits are surrounded by a which are easily damaged by ● Machilus persistent flower tube. mechanical handling Cinnamomum often have a persistent placenta Leguminosae – Dehiscent/semidehiscent pods. Mature fruits will split up upon Caesalpinaceae Often large, woody and thick. drying. However, owing to the ● Erythrophloeum Seeds often remain enclosed in thickness of the pod and the ● Intsia the fruit until after dispersal. woody character, drying for a ● Pelthophorum In Sindora and Afzelia seeds long time, occasionally using an ● Senna have large and thick arils artificial heat source, is ● Brachystegia necessary. Pods that remain ● Delonix closed can be split open ● Bauhinia manually by a few blows with a ● Baikaea club. Arils are easiest to remove ● Sindora immediately after extraction ● Afzelia when they are still soft. Strong drying for dehiscence has the drawback of hardening the aril. A few hours’ soaking immedi- ately after extraction facilitates manual removal of the aril Leguminosae – Indehiscent often round pods, Drying and then thrashing or Caesalpinaceae – 30–70-cm long. Seeds pounding to crush the fruits. ● Cassia surrounded by a sticky Seeds usually separate readily ● Tamarindus substance from the fruits. Residual pulp ● Dialium removed by washing with ● Koompassia addition of sodium hypochlorite. Seeds cleaned by sifting following winnowing APPENDIX 369 Table A.1. Seed processing table – species list––Cont’d. Family/genus / Prevailing fruit type – species group description Extraction procedure Leguminosae – Dehiscent thin pods, usually Sun-drying until dehiscence. Mimosaceae with many (4–16) seeds. Shaking or thrashing used to ● Acacia (some) Seeds usually remain attached extract seeds – the strength and ● Albizia to half of the pods during method depend on the strength ● Paraserianthes dispersal. Australian acacias of funicle attachment. Arils ● Xylia frequently with funicle detached by threshing, in ● Leucaena developed into an aril brushing machines or by ● Calliandra biological means (e.g. ants) ● Gllericidia Leguminosae – Indehiscent
Recommended publications
  • Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities Against Multidrug-R
    pathogens Article Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities Gowoon Kim 1, Ren-You Gan 1,2,* , Dan Zhang 1, Arakkaveettil Kabeer Farha 1, Olivier Habimana 3, Vuyo Mavumengwana 4 , Hua-Bin Li 5 , Xiao-Hong Wang 6 and Harold Corke 1,* 1 Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (G.K.); [email protected] (D.Z.); [email protected] (A.K.F.) 2 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China 3 School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China; [email protected] 4 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; [email protected] 5 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; [email protected] 6 College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; [email protected] * Correspondence: [email protected] (R.-Y.G.); [email protected] (H.C.) Received: 3 February 2020; Accepted: 29 February 2020; Published: 4 March 2020 Abstract: Novel alternative antibacterial compounds have been persistently explored from plants as natural sources to overcome antibiotic resistance leading to serious foodborne bacterial illnesses.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Effect of Seed Size, Pre-Sowing Treatments and Potting Mixture on Seedlings Growth Character and Biomass Production Under Nurser
    International Journal of Chemical Studies 2019; 7(4): 1502-1507 P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; 7(4): 1502-1507 Effect of seed size, pre-sowing treatments and © 2019 IJCS Received: 04-05-2019 potting mixture on seedlings growth character Accepted: 06-06-2019 and biomass production under nursery conditions Akoijam Benjamin of Terminalia chebula Retz Department of Forestry & Environmental Science, Manipur University, Imphal, Manipur, India Akoijam Benjamin, Salam Dilip, Gurumayum Ranibala and Naorem Bidyaleima Chanu Salam Dilip Department of Forestry & Environmental Science, Manipur Abstract University, Imphal, Manipur, The experiment conducted aims in improving seed germination, seedling growth and biomass production India of Terminalia chebula. For the experiment, the depulped fruits were graded into three different sizes on the basis of length and were subjected to eight pre-sowing treatments and followed by transplanting Gurumayum Ranibala seedlings in three different potting mixtures. It was evident from the study that large size seeds (L3) Department of Forestry & excelled in all germination, growth and seedling biomass parameters. Among treatments, maximum Environmental Science, Manipur germination parameters were recorded from T8 (nicking at broad end then soaking in ordinary water for University, Imphal, Manipur, 36 hours). Among seed size and pre-sowing treatment combinations, most successful result was observed India from large size seeds subjected to nicking at broad end then soaking in ordinary water for 36 hours (T8L3). Among three different potting mixtures, seedlings transplanted in the potting mixture M3 (Soil: Naorem Bidyaleima Chanu College of Horticulture & Sand: FYM-1:2:3) exerted significantly maximum seedlings growth and biomass production under Forestry, Central Agricultural nursery conditions.
    [Show full text]
  • Ministry of Education and Training Vietnam Academy
    MINISTRY OF EDUCATION VIETNAM ACADEMY OF AND TRAINING SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY ----------------------------- Nguyen Xuan Quyen STUDY ON TAXONOMY OF CASHEW FAMILY (ANACARDIACEAE R. Br.) IN VIETNAM Major: Botany Code: 9.42.01.11 SUMMARY OF BIOLOGY DOCTORAL THESIS Hanoi, 2021 The thesis is completed at: GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY, VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY Supervisors: 1. Tran Thi Phuong Anh Ph.D. 2. Nguyen The Cuong Ph.D. Examination board Commenter 1: Commenter 2: Commenter 3: This doctoral thesis will be defended at the GUST-level Board of Examiner at Graduate University of Science and Technology, Vietnam Academy of Science and Technology at ......... on ........./......... /……. This doctoral thesis can be found at: - National Library of Vietnam - Library of Gradute Univesity of Science and Technology INTRODUCTION 1. Rationale for the study Vietnam is located in the tropical monsoon climate, geographic location with complex terrain and many different ecological regions, so the flora is very diverse and rich. From the late 18th century up to now, there have been many studies on plant taxonomy in our country, including new research results that have contributed to the necessary scientific basis for a number of related fields such as: conservation of biodiversity, ecology, agriculture, forestry, medicine, ... and management such as planning, building economic development, ... In the world, there are many completed and systematic work on plant taxonomy, which are the National Floras. That is the most up-to-date document on the specimen and latest information, using the modern methods of plants classification in each country, ... In Vietnam, 21 volumes The Flora of Vietnam have been published (2000- 2017), which included 3639 species, 665 genera belonging to 57 families of plant.
    [Show full text]
  • A Caenorhabditis Elegans Model for Discovery of Novel Anti-Infectives
    fmicb-07-01956 November 30, 2016 Time: 12:40 # 1 REVIEW published: 02 December 2016 doi: 10.3389/fmicb.2016.01956 Beyond Traditional Antimicrobials: A Caenorhabditis elegans Model for Discovery of Novel Anti-infectives Cin Kong†, Su-Anne Eng, Mei-Perng Lim and Sheila Nathan* School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia The spread of antibiotic resistance amongst bacterial pathogens has led to an urgent need for new antimicrobial compounds with novel modes of action that minimize the potential for drug resistance. To date, the development of new antimicrobial drugs is still lagging far behind the rising demand, partly owing to the absence of an effective screening platform. Over the last decade, the nematode Caenorhabditis elegans Edited by: Luis Cláudio Nascimento Da Silva, has been incorporated as a whole animal screening platform for antimicrobials. This CEUMA University, Brazil development is taking advantage of the vast knowledge on worm physiology and how it Reviewed by: interacts with bacterial and fungal pathogens. In addition to allowing for in vivo selection Osmar Nascimento Silva, of compounds with promising anti-microbial properties, the whole animal C. elegans Universidade Católica Dom Bosco, Brazil screening system has also permitted the discovery of novel compounds targeting Francesco Imperi, infection processes that only manifest during the course of pathogen infection of the Sapienza University of Rome, Italy host. Another advantage of using C. elegans in the search for new antimicrobials is that *Correspondence: Sheila Nathan the worm itself is a source of potential antimicrobial effectors which constitute part of its [email protected] immune defense response to thwart infections.
    [Show full text]
  • The Tolerance of Pinus Patula 3 Pinus Tecunumanii, and Other Pine Hybrids, to Fusarium Circinatum in Greenhouse Trials
    New Forests (2013) 44:443–456 DOI 10.1007/s11056-012-9355-3 The tolerance of Pinus patula 3 Pinus tecunumanii, and other pine hybrids, to Fusarium circinatum in greenhouse trials R. G. Mitchell • M. J. Wingfield • G. R. Hodge • E. T. Steenkamp • T. A. Coutinho Received: 7 August 2011 / Accepted: 29 June 2012 / Published online: 10 July 2012 Ó Springer Science+Business Media B.V. 2012 Abstract The field survival of Pinus patula seedlings in South Africa is frequently below acceptable standards. From numerous studies it has been determined that this is largely due to the pitch canker fungus, Fusarium circinatum. Other commercial pines, such as P. elliottii and P. taeda, show good tolerance to this pathogen and better survival, but have inferior wood properties and do not grow as well as P. patula on many sites in the summer rainfall regions of South Africa. There is, thus, an urgent need to improve the tolerance of P. patula to F. circinatum. Operational experience indicates that when P. patula is hybridized with tolerant species, such as P. tecunumanii and P. oocarpa, survival is greatly improved on the warmer sites of South Africa. Field studies on young trees suggest that this is due to the improved tolerance of these hybrids to F. circinatum. In order to test the tolerance of a number of pine hybrids, the pure species representing the hybrid parents, as well as individual families of P. patula 9 P. tecunumanii, a series of greenhouse screening trials were conducted during 2008 and 2009. The results indicated that species range in tolerance and hybrids, between P.
    [Show full text]
  • Pinus Patula Scheide Et Deppe
    SOMATIC EMBRYOGENESIS OF PINUS PATULA SCHEIDE ET DEPPE BY NICOLETTA BIANCA JONES Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany, Faculty of Science University of Natal, Pietermaritzburg December 1994 Not here for centuries the winds shall sweep Freely again, for here my tree shall rise To print leaf-patterns on the empty skies And fret the sunlight. Here where grasses creep Great roots shall thrust and life run slow and deep: Perhaps strange children, with my children's eyes Shall love it, listening as the daylight dies To hear its branches singing them 10 sleep. MARGARET ANDERSON (1950) PREFACE The experimental work described in this thesis was carried out in the Botany Department, University of Natal, Pietermaritzburg, from January 1991 to July 1994 under the supervision of Professor J van Staden. The studies have not been submitted in any form to another University and except where the work of others is acknowledged in the text, are the results of my own investigation. NICOLETTA BIANCA JONES DECEMBER 1994 ACKNOWLEDGE:MENTS I am grateful to Professor J van Staden for providing me with the opportunity and the facilities in which to conduct my studies. I wish to thank Dr Arlene Bayley for her valuable contribution in the form of numerous discussions and for her interest and enthusiasm in my work. My sincere gratitude also goes to SAPPI Forests Research, in particular, Dr Mike Shaw for providing me with the plant material for this study, and for giving me the opportunity to present my work at both the AFOCELlIUFRO Congress in Bordeaux, France, in 1992 and at the Congress of Plant Tissue and Cell Culture in Florence, Italy in 1994.
    [Show full text]
  • Oil and Gas Conference December 3-5, 2018 Dubai, UAE
    Ismail Mohammad et al., Int J Petrochem Res. 2018 http://dx.doi.org/10.18689/2638-1974.a2.005 2nd International Oil and Gas Conference December 3-5, 2018 Dubai, UAE Production of Biodiesel and Soap from Sal (Shorea robusta) Seed Oil Ismail Mohammad1*, Md. Ikramul Hasan1, Md. Muhaiminul Islam, Nasima Akter1, 2 and A.M. Sarwaruddin Chowdhury1 1Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Bangladesh 2Department of Nutrition and Food Engineering, Daffodil International University, Bangladesh horearobusta, commonly known as Sal, is the major plant of Sal forest which covers about 32% of the total forest land of SBangladesh. In this study, oil was extracted from the seed by conventional soxhlet extraction with n-hexane and ultrasonication technique. Seeds without wing were found to contain about 15% oil for 6 hours soxhlet extraction at 50°C and 45 minutes ultrasonication at 40°C. Fatty acid composition of the soxhlet extracted oil analyzed by GC-FID showed stearic acid and oleic acid as the major components. Acid value, iodine value, saponification value, peroxide value, refractive index, viscosity were also determined. Thermogravimetric analysis of the oil for the determination of the thermal stability of the oil. Transesterification and Saponification process were carried out to produce Biodiesel and the soap from the extracted seed oil. The produced biodiesel and the soap were characterized and a comparative studies were carried out with international standards. The optimum yield for biodiesel was found around 40% of the raw materials and the cytotoxic analysis of the produced soap were carried out. The integrated production of biodiesel and soap from Sal seed oil will bring a drastic change in the realization fuel and cosmetic industries.
    [Show full text]
  • Curriculum Vitae Of
    C. V. of Dr. Mohammad Ismail Associate Professor, Dept. of Applied Chemistry & Chemical Engineering University of Dhaka, Dhaka-1000, Bangladesh. Phone: +880-1553845400, +880-1828538510 E-mail: [email protected], [email protected] BRIEF PROFILE Born in Bangladesh on November 1, 1978. Ph.D. in Engineering (Chemical) from University of Cambridge, UK on July 2016. 16+ years experiences of teaching and research at the University, Govt. and private research Organizations (University of Cambridge, University of Dhaka, BCSIR, Insight) Having 12+ years Consultancy experiences on Environment & Energy, Air pollution & Clean Fuel, CCS & Hydrogen Production; Climate Change, Pollution control & Waste management; Textile, Leather and Pharmaceutical Chemicals & Technologies etc. 10+ years project management experience with Department of Environment (DoE), Ministry of Environment, Forestry & Climate Change (MoEFCC), Ministry of Science & Technology, Ministry of Education of Bangladesh, UNDP, ADB etc. 10+ years of entrepreneurial and administrative experiences. Management experience of 12+ Research and Development Projects. Awarded IDB-Cambridge Scholarship (2012–2016), RSC & Ford of Britain grants etc. Authored and co-authored more than 40 peer reviewed journal papers Presented research findings in more than 40 International & National conferences. Supervised 40+ undergraduate & graduate (M.Sc., M.Phil. & Ph.D) student’s thesis. Reviewer of 5+ Research Journals. Academic Qualification PhD in Engineering: University of Cambridge, United Kingdom (2012 - 2016): Dept. of Engineering. Area: Clean Energy, Carbon Capture, and Electricity from coal. Thesis title: Development and Evaluation of Iron Oxide-based Oxygen Carriers for Chemical Looping Combustion and Hydrogen Production. Master’s of Science (M.S.) in Applied Chemistry & Chemical Technology, University of Dhaka, Bangladesh, 2002 (Exam.: 2005), Result: 1st class 1st.
    [Show full text]
  • Inner Page Final 2071.12.14.Indd
    J. Nat. Hist. Mus. Vol. 28, 2014, 127-136 WILD EDIBLE FRUITS OF PALPA DISTRICT, WEST NEPAL RAS BIHARI MAHATO Department of Botany, R. R. Multiple campus Janakpur, Nepal [email protected] ABSTRACT This paper documents the wild edible fruits of tropical and subtropical forest of Palpa District, West Nepal. Thirty-seven plant species under 17 families and 27 genera were identifi ed as wild edible fruit. Over 86% percent of them were trees and shrubs (32 species), 11% herbs (4 species) and the remaining 3% (1 species) woody climbers. Moraceae (9 species), Rosaceae (7 species), Anacardiaceae, Berberidaceae, Combretaceae, Fabaceae, Solanaceae and Rutaceae (2 species each) were the most common families constituting about 75.7% of edible plants. The remaining 24.3% (9 species) of edible plants were distributed among 9 families and 9 genera. A considerable number of wild fruits are sold in market. These are Aegle marmelos, Artocarpus integra, Artocarpus lakoocha, Choerospondias axillaris, Myrica esculenta, Phoenix humilis, Phyllanthus emblica, Prunus persica, Pyracantha crenulata,Tamarindus indica, Terminalia bellirica, Terminalia chebula, Zanthoxylum armatum and Zizyphus mauritiana. Medicinal uses of some major economically important fruits are also documented. Keywords: tropical, subtropical forest, medicinal uses, wild fruits, sweet nuggets INTRODUCTION Wild edible fruits play an important role in the economy of rural people especially living in the hilly region by providing them food and also in generating side income. They collect the wild edible fruits from forest and sold in market regularly. The rural people have better knowledge of wild edible fruits as they visit the forest regularly and have constant association and dependence on these forests and its products for their livelihood.
    [Show full text]
  • Pinus Patula and Pine Hybrid Hedge Productivity in South Africa: a Comparison Between Two Vegetative Propagation Systems Exposed to Natural Infection By
    Pinus patula and pine hybrid hedge productivity in South Africa: a comparison between two vegetative propagation systems exposed to natural infection by Fusarium circinatum CM Ford*1,2, NB Jones1 and PWC Chirwa2 1Sappi Forests, Shaw Research Centre, PO Box 473, Howick, 3290, South Africa 2Forest Science Postgraduate Programme, Department of Plant Production and Soil Science, University of Pretoria, Pretoria, 0002, South Africa * Corresponding author, email: [email protected] In response to the Fusarium circinatum pine pathogen threat in Southern Africa, research has been conducted on the development of F. circinatum- tolerant P. patula and P. patula hybrids. The objective of this study was to investigate the propagation potential of these taxa in two vegetative propagation systems, hydroponic sand beds and polythene bags with composted pine bark growing media. Significant differences (p < 0.001) in mortality associated with F. circinatum were observed between the P. patula x P. tecunumanii (LE) hybrid (6%) and P. patula (19-23%). No significant differences in mortality associated with F. circinatum were observed within P. patula x P. tecunumanii (LE) families which ranged from zero to 15 percent. Significant mortality differences (p < 0.001) were observed between P. patula families which ranged from eight to 44 percent. The number of rooted cuttings produced, per hedge established, over the four year period was significantly better (p < 0.001) in the P. patula x P. tecunumanii (LE) hybrid (52) than in P. patula (29-33). Significant differences (p < 0.001) were also observed in the number of rooted cuttings produced per family, with P. patula x P.
    [Show full text]
  • Library of Congress Classification
    S AGRICULTURE (GENERAL) S Agriculture (General) Periodicals. By language of publication For works about societies and serial publications of societies see S21+ For general yearbooks see S414 1 English (American) 3 English 5 French 7 German 9 Italian 11 Scandinavian 12 Dutch 13 Slavic 15 Spanish and Portuguese 16.A-Z Other European languages, A-Z Colonial, English, and American see S1+ 18 Polyglot 19 Other languages (not A-Z) 20 History and description of periodicals and societies (General) Documents and other collections Including societies and congresses United States Federal documents Commissioner of Patents 21.A19 Agricultural report Department of Agriculture 21.A2-.A29 Report of the Commissioner or Secretary 21.A3 The official record of the Department of Agriculture 21.A35 Yearbook 21.A37 Agriculture handbook 21.A4-.A49 Circulars 21.A6 Farmers' bulletins 21.A63 Weekly newsletter to crop correspondents 21.A7 Bulletin 21.A74 Agriculture information bulletin 21.A75 Journal of agricultural research 21.A78 Weather, crops, and markets 21.A8-.A99 Other reports 21.A86-.A95 Financial: accounts and disbursements, etc. 21.A86 Estimates of expenditures 21.A87 Expenditures ... Letter from the Secretary of Agriculture 21.A99 Miscellaneous general. By date 21.C8-.C9 History 21.C8 Official 21.C9 Nonofficial Administrative documents; appointments; personnel 21.D2-.D39 Serial publications 21.D4-.D7 Monographs Reports of individual bureaus Bureau of Agricultural Economics see HD1751 Bureau of Biological Survey see QH104+ Bureau of Chemistry see S585
    [Show full text]