Orders of Magnitude: a History of the NACA and NASA, 1915-1990
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SATELLITES at WORK Space in the Seventies
SaLf ILMITRATBONS REPROMhdONkp N BLACK ANd WHiT? SATELLITES AT WORK Space in the Seventies 4 (SPACE IN N72-13 8 6 6 (NASA-EP-8 ) SATELLITES AT WORK THE SEVENTIES) W.R. Corliss (NASA) Jun. 1971 29 p CSCL 22B Unclas Reproduced by G3/31 11470 NATIONAL TECHNICAL u. INFORMATION SERVICE U S Department of Commerce Springfield VA 22151 J National Aeronautics and Space Administration SPACE IN THE SEVENTIES Man has walked on the Moon, made scientific observations there, and brought back to Earth samples of the lunar surface. Unmanned scientific spacecraft have probed for facts about matter, radiation and magnetism in space, and have collected data relating to the Moon, Venus, Mars, the Sun and some of the stars, and reported their findings to ground stations on Earth. Spacecraft have been put into orbit around the Earth as weather observation stations, as communications relay stations for a world-wide telephone and television network, and as aids to navigation. In addition, the space program has accelerated the advance of technology for science and industry, contributing many new ideas, processes and materials. All this took place in the decade of the Sixties. What next? What may be expected of space exploration in the Seventies? NASA has prepared a series of publications and motion pictures to provide a look forward to SPACE IN THE SEVENTIES. The topics covered in this series include: Earth orbital science; planetary exploration; practical applications of satellites; technology utilization; man in space; and aeronautics. SPACE IN THE SEVENTIES presents the planned programs of NASA for the coming decade. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Book Tribute to George Low –“The Ultimate Engineer”
Book Tribute to George Low –“The Ultimate Engineer” The Ultimate Engineer: The Remarkable Life of NASA's Visionary Leader George M. Low by Richard Jurek Foreword by Gerald D. Griffin From the late 1950s to 1976 the U.S. manned spaceflight program advanced as it did largely due to the extraordinary efforts of Austrian immigrant George M. Low. Described as the "ultimate engineer" during his career at NASA, Low was a visionary architect and leader from the agency's inception in 1958 to his retirement in 1976. As chief of manned spaceflight at NASA, Low was instrumental in the Mercury, Gemini, and Apollo programs. Low's pioneering work paved the way for President Kennedy's decision to make a lunar landing NASA's primary goal in the 1960s. After the tragic 1967 Apollo I fire that took the lives of three astronauts and almost crippled the program, Low took charge of the redesign of the Apollo spacecraft, and helped lead the program from disaster and toward the moon. In 1968, Low made the bold decision to go for lunar orbit on Apollo 8 before the lunar module was ready for flight and after only one Earth orbit test flight of the Command and Service modules. Under Low there were five manned missions, including Apollo 11, the first manned lunar landing. Low's clandestine negotiations with the Soviet Union resulted in a historic joint mission in 1975 that was the precursor to the Shuttle-MIR and International Space Station programs. At the end of his NASA career, Low was one of the leading figures in the development of the Space Shuttle in the early1970s, and was instrumental in NASA's transition into a post-Apollo world. -
THE BIRTH of the ATLANTIC AIRLINER Part Iva The
THE BIRTH OF THE ATLANTIC AIRLINER (1920-1940) by Rit Staalman Part IVa The Ultimate Propeller Airliner SUMMING UP: 1. Required for an Atlantic Airliner: Low Own Weight (airframe + engines), High Load Capacity, Low Drag. 2. Suitable building material: Dur-Aluminum (favourable weight/strength + durability); suitable construction method: Semi-monocoque, i.e. skin takes part of load. 3. Design:: make wings as small as possible = high wing loads (see earlier). 4. Small wings decrease weight, also lower drag. They require airplane to fly at high speed. (For the Atlantic this is good, because the plane often has to battle high head winds.) High air speed implies that good aerodynamic form is needed. It also implies that high power is needed, especially at take- off with full load. 5. Powerful,/light-weight engines become available in the 1930’s (see appendix). 6.The various flight regimes (take-off, climbing, cruising with different weights) require propellers with adjustable blade angles. These also appear on the market in the same period. So at the beginning of World War II all elements are available for the construction of practical Atlantic airliners. 1930: AMERICA GOES MONO AND METAL 1 1. Boeing Founded by millionaire William Edward Boeing (1881-1956) in 1916 in Seattle, the first aircraft produced by Boeing Aircraft Co.were two biplanes on floats. In 1929 Boeing became part of United Aircraft and Transport until 1934, when the U.S. government ruled that the combination of aircraft factories and airlines was against the anti-trust laws. Claire Egtvedt was chief engineer from the start. -
Chapter 6.Qxd
CHAPTER 6: The NASA Family The melding of all of the NASA centers, contractors, universities, and often strong personalities associated with each of them into the productive and efficient organization necessary to complete NASA’s space missions became both more critical and more difficult as NASA turned its attention from Gemini to Apollo. The approach and style and, indeed, the personality of each NASA center differed sharply. The Manned Spacecraft Center was distinctive among all the rest. Fortune magazine suggested in 1967 that the scale of NASA’s operation required a whole new approach and style of management: “To master such massively complex and expensive problems, the agency has mobilized some 20,000 individual firms, more than 400,000 workers, and 200 colleges and universities in a combine of the most advanced resources of American civilization.” The author referred to some of the eight NASA centers and assorted field installations as “pockets of sovereignty” which exercised an enormous degree of independence and autonomy.1 An enduring part of the management problem throughout the Mercury and Gemini programs that became compounded under Apollo, because of its greater technical challenges, was the diversity and distinctiveness of each of the NASA centers. The diverse cultures and capabilities represented by each of the centers were at once the space program’s greatest resource and its Achilles’ heel. NASA was a hybrid organization. At its heart was Langley Memorial Aeronautical Laboratory established by Congress in 1917 near Hampton, Virginia, and formally dedicated in 1920. It became the Langley Research Center. Langley created the Ames Aeronautical Laboratory at Moffett Field, California, in 1939. -
Thirty Years of Lockheed Vegas
1 THIRTY YEARS OF LOCKHEED VEGAS by Chalmers A. Johnson AAHS Journal, Vol. 2, No. 1 - Spring 1957 Thirty years ago this year the first of a long line of superb aircraft bearing the Lockheed name made its debut in Los Angeles. This was the high-wing, strutless, monocoque-fuselage Vega. Developed from this aircraft was the mail-carrying Air Express, the streamlined Sirius and Altair and the hard-working passenger carrier, the Orion, The Vega was, however, the most famous of the wooden Lockheeds, It spread the name of what is today one of the giants of the American aircraft industry throughout the world. Mated with the famous Pratt and Whitney Wasp engine, the Lockheed Vega probably made more pioneering and historically important flights than any other single model of aircraft. This was due to its clear superiority of design and the craftsmanship incorporated into its construction. Today, there are about a half-dozen Vegas still in existence. They bear testimony to the ruggedness of this aircraft. The following report is concerned with a detailed history of the Lockheed Vega, It tells better than any description the fantastic history of one of America's most famous types of aircraft. It will be found that a large number of these aircraft found their way into our neighboring country, Mexico. In 1929, the American owned and founded Corporacion Aeronautica de Transportes (CAT) had the world's fastest airline. It was equipped with some of the first Wasp-Vegas, That they performed so well during the years of hangar-less life in the sun and dust of Torreon is a remarkable fact. -
For Bibliography by Year, See the Website)
THIS IS THE TEXT OF A BIBLIOGRAPHY IN THE WEB SITE “THE DISCOVERY OF GLOBAL WARMING” BY SPENCER WEART, HTTP://WWW.AIP.ORG/HISTORY/CLIMATE. FEBRUARY 2014. COPYRIGHT © 2003-2014 SPENCER WEART & AMERICAN INSTITUTE OF PHYSICS Bibliography by Author (for Bibliography by Year, see the Website) This bibliography may seem long (more than 2500 items), but it has a great many omissions. Please see the discussion of sources in the “Method” essay. Note in particular that the IPCC reports have by far the most complete bibliography for recent scientific work. Abbreviations used in the notes: AIP: Niels Bohr Library at the American Institute of Physics, College Park, MD LDEO: Lamont-Doherty Earth Observatory, Palisades, NY SIO: Scripps Institution of Oceanography Archives, La Jolla, CA Abarbenel, Albert, and Thomas McCluskey (1950). “Is the World Getting Warmer?” Saturday Evening Post, 1 July, pp. 22-23, 57-63. Abbot, Charles G., and F.E. Fowle, Jr. (1908). “Income and Outgo of Heat from the Earth, and the Dependence of Its Temperature Thereon.” Annals of the Astrophysical Observatory (Smithsonian Institution, Washington DC) 2: 159-176. Abbot, Charles G., and F.E. Fowle, Jr. (1913). “Volcanoes and Climate.” Smithsonian Miscellaneous Collections 60(29): 1-24. Abbot, Charles G. (1967). “Precipitation in Five Continents.” Smithsonian Miscellaneous Collections 151(5). Abelmann, Andrea, et al. (2006). “Extensive Phytoplankton Blooms in the Atlantic Sector of the Glacial Southern Ocean.” Paleoceanography 21: PA1013 [doi:10.1029/2005PA001199, 2006]. Abelson, P.H. (1977). “Energy and Climate.” Science 197: 941. Abe-Ouchi, Ayako, et al. (2013). “Insolation-Driven 100,000-Year Glacial Cycles and Hysteresis of Ice-Sheet Volume.” Nature 500: 190-93 [doi:10.1038/nature12374]. -
Grin,Yaue T: M, 2
4 w .. -. I 1 . National Aeronautics and STace Administration Goddard Space Flight Center C ont r ac t No NAS -5 -f 7 60 THE OUTERMOST BELT OF CFLARGED PARTICLES _- .- - by K. I, Grin,yaue t: M, 2. I~alOkhlOV cussa 3 GPO PRICE $ CFSTI PRICE(S) $ 17 NOVEbI3ER 1965 Hard copy (HC) .J d-0 Microfiche (M F) ,J3’ ff 853 July 85 Issl. kosniicheskogo prostrznstva by K. N. Gringaua Trudy Vsesoyuzrloy koneferentsii & M. z. Khokhlov po kosaiches?%inlucham, 467 - 482 Noscon, June 1965. This report deals with the result of the study of a eone of char- ged pxticles with comparatively low ener-ies (from -100 ev to 10 - 4Okev), situated beyond the outer rzdiation belt (including the new data obtained on Ilectron-2 and Zond-2). 'The cutkors review, first of all, an2 in chronolo~icalorder, the space probes on which data on soft electrons 'and protons were obtained beyond the rsdistion belts. A brief review is given of soae examples of regis- tration of soft electrons at high geominetic latitudes by Mars-1 and Elec- tron-2. It is shown that here, BS in other space probes, the zones of soft electron flwcys are gartly overlap7inr with the zones of trapped radiation. The spatial distributio;: of fluxcs of soft electrons is sixdied in liqht of data oStziined fro.1 various sFnce probes, such as Lunik-1, Explorer-12, Explorer-18, for the daytime rerion along the map-etosphere boundary &om the sumy side. The night re-ion of fluxes is exmined fron data provided by Lunik-2, 7xpiorer-12, Z~nd-2~~ni the results of various latest works with reKarr! to the relationshi- of that distribution with the structure of tire marnetic field are exCmined and cornpcved. -
Download Chapter 155KB
Memorial Tributes: Volume 8 BEN RICH 200 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 8 BEN RICH 201 Ben Rich 1925-1995 By Willis M. Hawkins Ben Rich died on January 5, 1995, after a full career as an engineer, a designer, and an effective and cherished executive. I first knew Ben when he joined the Lockheed Aircraft Company in Burbank back in 1950. He came to us from the University of California, Berkeley, and University of California, Los Angeles, with a master's degree in mechanical engineering. At the time, I was in charge of the Advanced Design Organization under the Deputy Chief Engineer C. L. "Kelly" Johnson, and we were working on our first Mach 2+ Air Force fighter proposal, which became the F-104. Ben was assigned the task of analyzing the aerothermodynamic performance of the power plant with little or no existing state of the art for supersonic inlets. It is a testament to Ben's understanding of this specialty that the inlet configuration was classified by the Air Force and the details obscured in Air Force-released pictures of the airplane for a number of years. The Lockheed "Skunk Works," which had originated during the design and development of the original P-80 prototype "Lulu-Belle," was being reactivated at about the time that the F-104 was conceived. Its specific purpose was the secret development of the U-2, and Ben was ''borrowed" by Kelly Johnson to help on that program. His "temporary'' assignment became his career. Under Kelly, Ben pursued his specialty of aerothermodynamic analysis. -
The Power for Flight: NASA's Contributions To
The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 .................................... -
Download Chapter 457KB
Memorial Tributes: Volume 17 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 17 ABE SILVERSTEIN 1908–2001 Elected in 1967 “For aeronautical and space systems.” BY ROBERT S. ARRIGHI SUBMITTED BY THE NAE HOME SECRETARY ABE SILVERSTEIN was a visionary engineer and leader whose accomplishments during his 40-year career continue to impact the aerospace community. He was instrumental in the design of a massive subsonic wind tunnel (the Full-Scale Tunnel), study of complete engine systems, development of the nation’s early jet engines and ramjets, creation of large supersonic wind tunnels, use of liquid hydrogen as a propellant, the foundation of NASA, formation of the Mercury and Apollo Programs, the success of the Centaur second- stage rocket, and a great deal more. He excelled at instantly grasping the essence of a problem, proposing a likely solution, and delegating the task to the experts to resolve. His off-the- cuff acumen and decisiveness inspired both fear and intense loyalty from staff and colleagues. Abe Silverstein died on June 1, 2001, at the age of 92. Abe was born on September 15, 1908, in Terre Haute, Indiana, to Joseph and Eva Silverstein. His father advised him at a young age to pursue engineering, and Abe claimed that his mother’s insistence on perfection in his school work provided him with the mindset required for future space engineering. Abe graduated from Terre Haute’s Rose Polytechnic Institute in 1929 with a BS in mechanical engineering. He returned to earn a degree as a mechanical engineering professional in 1934. -
Sherman Oaks, California
Sherman Oaks, California Theodore von Kármán Engineer of the Year Educator of the Year Achievement Award Mr. Eric D. Knutson Dr. Melvin A. Breuer Dr. Buzz Aldrin Director of Advanced Projects Professor Astronaut, Apollo XI Lockheed Martin Skunkworks University of Southern Retired Colonel, USAF Palmdale, California California Author and Space Los Angeles, California Advocate th 56 Annual HONORS AND AWARDS BANQUET Saturday, February 26, 2011 In Celebration of National Engineers Week, February 20-26, 2011 National Engineers Week Committees Banquet Committee: Marek Barylak, Robert Budica, Larry Dalton, Kenneth Davis, Sonja Domazet, Carlos & Margo Guerra, Stephen Guine, William Johnson, Jerry Kraim, Diane Kulisek, Paul Landry, Charles Olsefsky, S. K. Ramesh, Rick Ratcliffe, Ramin Roosta, Noelle Segura, R. Freeman Straub, Robert Tarn, Charles Volk Honors & Awards Committee: Kenneth Davis, Diane Kulisek, Paul Landry, Charles Olsefsky, R. Freeman Straub, Robert Tarn Visual Media Services: Warren Huskey, Mike Matte Awards Assembly Marek Barylak, Larry Dalton, Kenneth Davis, Sonja Domazet, William Johnson, Diane Kulisek, Sharlene Katz, Charles Olsefsky, Ramin Roosta, R. Freeman Straub, Charles Volk Hostesses: Mary Claire Jensen, Mickey Knobloch, Olivia Landry, Maria Tarn Audio/Video: Swank Audio Visuals Award Presenters: Sonja Domazet, Stephen Guine, William Johnson, Paul Landry, Robert Tarn, Charles Volk Banquet Setup/Awards Distribution: Margo Guerra, CSUN Engineering Students Math Counts: Jerry Kraim LA County Science Bowl: Larry Dalton First Robotics: R. Freeman Straub The Engineers’ Council Board of Directors President Vice President Treasurer Secretary Kenneth G. Davis Sonja Domazet Dr. Charles H. Volk Robert B. Tarn Trustees: Dr. Robert J. Budica, Paul F. Landry, Dr. A. F. Ratcliffe, Robert B.