2021 Student Challenge Study Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hunting Billbug Sphenophorus Venatus (Coleoptera: Dryophthoridae) Adult Feeding and Attraction to Warm- and Cool- Season Turfgrasses
The Great Lakes Entomologist Volume 53 Numbers 1 & 2 - Spring/Summer 2020 Numbers Article 8 1 & 2 - Spring/Summer 2020 Hunting Billbug Sphenophorus venatus (Coleoptera: Dryophthoridae) adult feeding and attraction to warm- and cool- season turfgrasses Alexandra Grace Duffy Brigham Young University, [email protected] Douglas S. Richmond Purdue University, [email protected] Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Duffy, Alexandra Grace and Richmond, Douglas S. "Hunting Billbug Sphenophorus venatus (Coleoptera: Dryophthoridae) adult feeding and attraction to warm- and cool-season turfgrasses," The Great Lakes Entomologist, vol 53 (1) Available at: https://scholar.valpo.edu/tgle/vol53/iss1/8 This Scientific Note is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Hunting Billbug Sphenophorus venatus (Coleoptera: Dryophthoridae) adult feeding and attraction to warm- and cool-season turfgrasses Cover Page Footnote We thank Danielle Craig and Garrett Price for field assistance. eW are grateful for the cooperation of superintendents and staff at Purdue Sports Turf and William H. Daniel Turfgrass Research and Diagnostic Center. We are grateful for the cooperation of Dr. Ian Kaplan and Ulianova Vidal Gómez for assistance with the olfactometry methods. Dr. Juli Carrillo, Dr. Laura Ingwell, and Dr. Elizabeth Long provided helpful insights on earlier versions of this manuscript. Dr. Diane Silcox Reynolds provided helpful insight and was integral in developing the initial questions during the A. -
Zoysiagrass Genotypes Differ in Susceptibility to the Bluegrass
HORTSCIENCE 46(9):1314–1316. 2011. Studies have evaluated the resistance of cultivars and blends of kentucky bluegrass to the bluegrass billbug (Ahmad and Funk, Zoysiagrass Genotypes Differ in 1982; Lindgren et al., 1981; Shearman et al., 1983). However, currently, there is minimal Susceptibility to the Bluegrass Billbug, information associatedwiththepresenceof bluegrass billbug in Kansas and the suscep- Sphenophorus parvulus tibility of zoysiagrass. Therefore, the objec- tives of this study were to monitor the Jack D. Fry1 presence of bluegrass billbug larvae at the Department of Horticulture, Forestry, and Recreational Resources, Kansas Rocky Ford Turfgrass Research Center State University, 2021 Throckmorton Plant Science Center, Manhattan, KS (Manhattan, KS) and determine the suscepti- 66506 bility of zoysiagrass progeny including re- ciprocal crosses between Z. japonica · Z. Raymond A. Cloyd matrella or between ‘Emerald’ · Z. japonica Department of Entomology, Kansas State University, 123 West Waters Hall, to the bluegrass billbug. Manhattan, KS 66506 Materials and Methods Additional index words. damage, infestation, insect pest, turfgrass, Zoysia spp. Dr. Raymond A. Cloyd (Department of Abstract. Zoysiagrass, in general, has few insect pest problems but may suffer significant Entomology, Kansas State University, damage from infestations of the bluegrass billbug (Sphenophorus parvulus Gyllenhal). Manhattan, KS) identified all the bluegrass This study evaluated ‘Meyer’ and DALZ 0102 zoysiagrass (both Zoysia japonica Steud.) billbug larvae collected from the study area and 31 experimental zoysiagrass progeny, including reciprocal crosses between Z. at the Rocky Ford Turfgrass Research Center japonica · Z. matrella (L.) Merr. or crosses between ‘Emerald’ (Z. japonica · Z. pacifica (Manhattan, KS) during the course of the Goudsw.) · Z. -
Turf Insects
Ants O & T Guide [T-#01] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 With over 100 ant species in New Mexico, nursery below ground in harvester and fire ants are probably the most familiar and ant colonies. These require 10-14 days to most numerous insects found in turf, complete development. Æ During the ornamental plantings and elsewhere. Only summer, most adult ants probably three species of this abundant group of complete development from egg to adult insects will be described here. Harvester in 6-8 weeks during the summer. and southern fire ants are common in our turf. Red imported fire ant (RIFA) is an invasive, exotic species and a threat to New Mexico agriculture, public health and safety. Metamorphosis: Complete Mouth Parts: Chewing (larvae, adults) Pest Stage: Adults Scientifically: Ants are members of the Red imported fire ant worker, Solenopsis insect order Hymenoptera, Family invicta. Photo: April Noble, www.antweb.org, Formicidae. www.forestryimages.org Typical Life Cycle: Eggs are incubated in Ants are social insects living in colonies of the nursery area of the mound, close to the several hundred to many thousands of surface where the soil is sun warmed. Æ individuals. In its simplest form, a single Larvae are kept in the nursery area where mated queen produces all of the eggs. growing conditions are maintained at Nearly all of these are devoted to optimal levels. All of these stages are production of workers, sterile females tended, fed and protected by worker ants. -
General Pest Management: a Guide for Commercial Applicators, Category 7A, and Return It to the Pesticide Education Program Office, Michigan State University Extension
General Pest Management A Guide for Commercial Applicators Extension Bulletin E -2048 • October 1998, Major revision-destroy old stock • Michigan State University Extension General Pest Management A Guide for Commercial Applicators Category 7A Editor: Carolyn Randall Extension Associate Pesticide Education Program Michigan State University Technical Consultants: Melvin Poplar, Program Manager John Haslem Insect and Rodent Management Pest Management Supervisor Michigan Department of Agriculture Michigan State University Adapted from Urban Integrated Pest Management, A Guide for Commercial Applicators, written by Dr. Eugene Wood, Dept. of Entomology, University of Maryland; and Lawrence Pinto, Pinto & Associates; edited by Jann Cox, DUAL & Associates, Inc. Prepared for the U.S. Environmental Protection Agency Certification and Training Branch by DUAL & Associates, Arlington, Va., February 1991. General Pest Management i Preface Acknowledgements We acknowledge the main source of information for Natural History Survey for the picture of a mole (Figure this manual, the EPA manual Urban Integrated Pest 19.8). Management, from which most of the information on structure-infesting and invading pests, and vertebrates We acknowledge numerous reviewers of the manu- was taken. script including Mark Sheperdigian of Rose Exterminator Co., Bob England of Terminix, Jerry Hatch of Eradico We also acknowledge the technical assistance of Mel Services Inc., David Laughlin of Aardvark Pest Control, Poplar, Program Manager for the Michigan Department Ted Bruesch of LiphaTech, Val Smitter of Smitter Pest of Agriculture’s (MDA) Insect and Rodent Management Control, Dan Lyden of Eradico Services Inc., Tim Regal of and John Haslem, Pest Management Supervisor at Orkin Exterminators, Kevin Clark of Clarks Critter Michigan State University. -
Extent of Larval Populations of Turfgrass Insect Pests at Rocky Ford Turfgrass Research Center at Manhattan, KS
Kansas Agricultural Experiment Station Research Reports Volume 4 Issue 6 Turfgrass Research Article 1 2018 Extent of Larval Populations of Turfgrass Insect Pests at Rocky Ford Turfgrass Research Center at Manhattan, KS Raymond A. Cloyd Kansas State University, [email protected] Follow this and additional works at: https://newprairiepress.org/kaesrr Part of the Entomology Commons, and the Horticulture Commons Recommended Citation Cloyd, Raymond A. (2018) "Extent of Larval Populations of Turfgrass Insect Pests at Rocky Ford Turfgrass Research Center at Manhattan, KS," Kansas Agricultural Experiment Station Research Reports: Vol. 4: Iss. 6. https://doi.org/10.4148/2378-5977.7591 This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2018 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer. Extent of Larval Populations of Turfgrass Insect Pests at Rocky Ford Turfgrass Research Center at Manhattan, KS Abstract Many insect pests have a larval or grub stage that resides belowground and feeds on turfgrass roots (Potter, 1998; Vittum et al., 1999; Held and Potter, 2012). The major belowground insect pests (white grubs) associated with turfgrass throughout Midwestern states that are present in Kansas include: May/ June beetles (Phyllophaga spp), masked chafers (Cyclocephala spp), and bluegrass billbug (Sphenophorus parvulus) (Miller et al., 2013). -
Draft Policy Review
Draft policy review A categorisation of invertebrate and pathogen organisms associated with fresh table grape bunches (Vitis spp.) imported from other Australian states and territories Supporting your success Draft pest categorisation report Contributing authors Bennington JM Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Hooper RG Research Officer – Biosecurity and Regulation, Plant Biosecurity Jackson SL Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Tuten SJ Senior Policy Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2014 Document citation DAFWA 2015, Draft policy review: A categorisation of invertebrate and pathogen organisms associated with fresh table grape bunches (Vitis spp.) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2015 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, -
Clover Mite Bryobia Praetiosa Order Acari, Family Tetranychidae; Spider Mites Native Pest
Pests of Trees and Shrubs Clover mite Bryobia praetiosa Order Acari, Family Tetranychidae; spider mites Native pest Host plants: Grasses, clovers, ornamental flowers, common on honeysuckle Description: Adult clover mites are eight-legged, reddish or brownish, and smaller than a pinhead. After feeding, they appear greenish-brown. They are easily distin- guished from other mites by a pair of front legs that extend forward and that are longer than the body and twice as long as any of the other legs. Clover mite adult, notice the long front legs and four anterior Life history: Adult males have not been found in the U.S. setae on tubercles. (64) Females are parthenogenetic, producing up to 70 eggs Photo: John Davidson during the summer months without mating. Damage occurs in early spring to early summer and again in late summer and early fall. The entire life span may be 1 to 7 months. Eggs are deposited in the fall in cracks and crevices of foundations, walls, tree bark, debris, and rocks; eggs hatch in spring; larvae migrate to grasses, clovers, and other host plants to feed; larvae molt into nymphs and then into adults. Clover mites are inactive during winter, becoming active again in spring. Two or more generations are produced each year. Overwintering: Clover mites can pass the winter in any stage; eggs can be found on trees and shrubs. Overwintering adults are a nuisance pest when they Monitoring: Inspect premises for mites and hiding places. move into structures for the winter. Clover mites concentrate on warmer (southern, western) sites, especially where reflective surfaces add warmth. -
Clover Mites
Department of Bioagricultural Sciences and Pest Management Fort Collins, CO 80523-1177 Clover Mites Clover mite adult Clover mite under microscope Clover mite molting to adult (R. (Gary Alpert/IPM Images) Lehman/IPM Images) Typical Location When Observed: Clover mites commonly enter homes from infested turf on the south sides of buildings in late fall and early spring. Importance/Damage: Clover mites can be a serious nuisance in homes, appearing in large numbers and leaving reddish stains when crushed. They also damage turf in warm, dry areas of lawns during early to mid-spring. Distinguishing Features: Tiny (1/12 inch) clover mites have legs as long as the body. This will help distinguish them from our common mites except brown wheat mite, also found on turf. Look-Alikes: Brown wheat mite, Banks grass mite General Life History and Habits: Clover mites feed on turfgrass, clover and other plants during spring and fall. There are two or more generations during the year. In late spring, clover mites produce oversummering eggs that do not hatch until the return of freezing temperatures in fall. Clover mite injury to turf is commonly mistaken for winter kill and usually is found in the same sunny, dry areas of the lawn where winter drying problems occur. Furthermore, almost all injury occurs within 10 feet of a building, tree or some other upright surface, where they can climb to shed their old skins and lay eggs. Resources: More information on clover mites may be found in Extension Fact Sheet 5.505, Clover and Other Mites of Turfgrass. -
Technical Note 38: Description, Propagation, and Establishment of Wetland-Riparian Grass and Grass-Like Species Of
TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho – Salt Lake City, Utah TN PLANT MATERIALS NO. 38 OCTOBER 2011 REVISION DESCRIPTION, PROPAGATION, AND ESTABLISHMENT OF WETLAND - RIPARIAN GRASS AND GRASS-LIKE SPECIES IN THE INTERMOUNTAIN WEST J. Chris Hoag, NRCS, Aberdeen, Idaho (Ret.) Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho A healthy wetland system with a diverse plant community. Photo by Derek Tilley This technical note describes propagation protocols and establishment methods and considerations for wetland and riparian area creation and enhancement. It provides species descriptions for several wetland grass and grass-like species commonly used in the Intermountain West. 2 TABLE OF CONTENTS INTRODUCTION 5 DEFINING RIPARIAN ZONES 5 WETLAND INDICATOR CATEGORIES 8 DIRECT SEEDING 9 Seeding Grasses 9 Seeding Grass-like Wetland Species 10 Hydroseeding 10 TRANSPLANTS 11 Green House Plant Production 11 Wildings 12 Rhizomes 12 Wetland Sod 13 WETLAND TRANSPLANT ESTABLISHMENT 13 WATER MANIPULATION 14 SUMMARY 15 PLANT DATASHEETS 17 NATIVE SPECIES Beckmannia syzigachne American Sloughgrass 18 Calamagrostis canadensis Bluejoint Reedgrass 20 Carex aquatilis Water Sedge 22 Carex nebrascensis Nebraska Sedge 24 Deschampsia cespitosa Tufted Hairgrass 26 Distichlis spicata Inland Saltgrass 29 Eleocharis palustris Creeping Spikerush 31 Glyceria elata Mannagrass 33 Juncus balticus Baltic Rush 35 Schoenoplectus acutus Hardstem Bulrush 38 Schoenoplectus maritimus Cosmopolitan Bulrush 40 Schoenoplectus pungens Threesquare Bulrush 42 Spartina pectinata Prairie Cordgrass 44 Typha latifolia Cattail 46 3 INTRODUCED SPECIES Agrostis gigantea Redtop 48 Alopecurus arundinaceus Creeping Foxtail 51 Elymus hoffmanii RS Hybrid Wheatgrass 54 Phleum pretense Timothy 57 Thinopyrum ponticum Tall Wheatgrass 60 APPENDIX Table 1. -
BLUEGRASS BILLBUG (Sphenophorus Parvulus) Prepared
BLUEGRASS BILLBUG (Sphenophorus parvulus) Prepared by: Dr. M. Keith Kennedy Extension Specialist Department of Entomology Michigan State University The bluegrass billbug is a common turf pest which occasionally causes extensive damage to home lawns. These beetles are named because of their long snout or "bill" which ends in a set of small mandibles or jaws. They are usually seen in the spring (April-early May) or late fall (September- October) wandering about on sidewalks, drive ways, or patio's. The presence of billbugs in the lawn is generally not detected until the first signs of damage appear. Often this damage is attributed to other causes. The following information should assist you in becoming more familiar with this turf pest. Sphenophorus parvulus Hpsts Kentucky Bluegrass (Poa pratensis) Characteristic Damage spotty dead patches of turf scattered throughout the laWn in July and August. How to Recognize Adults - dull grey (lots of scales) to black or brown beetles, h+h" long, with a snout or bill. Adults have wings but seldqft fly* Larvae - white, leggless, 5/8" long, humpbacked grubs with a yellow to brown head capsule. Adult Larva l/l^icich 1/If. inch Damaging Stages adults feed on grass blades or stems but the major damage is caused by larvae feeding in the stem and roots. Life Cycle Billbugs overwinter as adults and become active as temperatures begin to warm in April. Eggs are first laid in grass stems in early May but most eggs are deposited in early June. (See Fig- 1) Eggs hatch in two weeks and the larvae tunnel down through the grass stem into the crown and eventually settle the roots. -
White Grubs and Billbugs: Control in Home Lawns
White Grubs and Billbugs: Control in Home Lawns Fact Sheet No. 5.516 Insect Series|Home and Garden by W.S. Cranshaw* White grubs and billbugs can be Quick Facts important pests of turfgrass in parts of Colorado. Both groups of insects feed below • Billbugs and white grubs ground and damage roots or feed within the are insects that damage turf growing crown area of the plant. grasses by feeding on the roots. • Heavy infestations of white grubs may kill grass or attract mammals, such as skunks, that damage grass when digging to feed on grubs. Figure 1a: White grub. Figure 1b: Billbug larva. • White grubs are best Photos by David Shetlar, The Ohio State Univer- Figure 2: White grub in root zone of a lawn. sity. controlled with insecticides Photo by David Shetlar, The Ohio State University. when eggs are beginning to White Grubs hatch. White grubs feed on the roots of grasses and usually can be found within the top • Billbugs are best controlled couple inches of soil. The body is creamy when adults are present on white with a reddish-brown head and the surface of the lawn in they have three pairs of legs on the thorax. spring. Normally they will be seen to curve their bodies into a distinctive C-shape and grubs of • Insect parasitic nematodes the larger Colorado species may reach nearly are a biological control option 1 inch long. for both white grubs and White grubs are the most damaging billbugs. insects in that occur in Colorado, and native • Lawns that are adequately species have long been particularly common Figure 3: Damaged sod pulled back to expose white grub larvae. -
Bryobia Praetiosa Koch 1836
Bryobia praetiosa Koch 1836 Material examined specimens not examined Taxonomy Subfamily Bryobiinae Fig. 1. Bryobia praetiosa live adult female (photo by S. Learmonth). Tribe Bryobiini Common Name clover mite Distribution +Australia, Argentina, Austria, Belgium, Bolivia, Brazil, CIS, Canada, Chile, China, Colombia, Costa Rica, Cyprus, Denmark, Egypt, Finland, France, *Germany, Greece, Greenland, Hawaii, hungary, India, Iran, Iraq, Ireland, Italy, Japan, Korea, Mexico, Morocco, New Zealand, Norway, Pakistan, Paraguay, Peru, Poland, Portugal, Rumania, South Africa, Spain, Sweden, Switzerland, Taiwan, The Netherlands, Turkey, United Kingdom, USA Fig. 2. Bryobia praetiosa dorsal habitus - a. larva; b. protonymph; c. deutonymph; d. adult female; e. emergent Taxonomy Changes peritreme; f. empodium (all redrawn from Geijskes (1939)). Bryobia praetiosa Koch 1836 Bryobia latitans Livshits & Mitrofanov 1966, synonymy Livshits & Mitrofanov 1971 Bryobia pseuodpraetiosa Wainstein 1956, synonymy Waintstein 1960 Diagnosis Fig. 3. Bryobia larvae, dorsal habitus - B. rubrioculus (as B. Larva (Figs 2a, 3) arborea) and B. praetiosa (redrawn from Morgan & Anderson 1957). dorsal body setae lanceolate (Morgan & Anderson 1957; Miller 1966; Gutierrez & Schicha 1983) (Fig. 3) prodorsal setae v1 short, lanceolate + remaining body setae spatulate (Mathys 1961 - see Notes) prodorsum cuticle granulate opisthosoma cuticle weakly granulate with widely spaced striae Female (Figs 1, 2d) empodium I short pad with one pair tenent hairs empodia II-IV pad with two rows of