1 Biological Synthesis and Transformation of Nitriles

Total Page:16

File Type:pdf, Size:1020Kb

1 Biological Synthesis and Transformation of Nitriles Biological Synthesis and Transformation of Nitriles Item Type text; Electronic Dissertation Authors Nelp, Micah Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 06:33:53 Link to Item http://hdl.handle.net/10150/621560 BIOLOGICAL SYNTHESIS AND TRANSFORMATION OF NITRILES by Micah Taylor Nelp _____________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN CHEMISTRY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 1 As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Micah Taylor Nelp entitled Biological Synthesis and Transformation of Nitriles and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ______________________________________________________ Date: April 1, 2016 Vahe Bandarian ______________________________________________________ Date: April 1, 2016 Matthew Cordes ______________________________________________________ Date: April 1, 2016 Indraneel Ghosh ______________________________________________________ Date: April 1, 2016 John Jewett ______________________________________________________ Date: April 1, 2016 Elisa Tomat Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ___________________________________________________ Date: April 1, 2016 Dissertation Director: Indraneel Ghosh 2 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Micah Taylor Nelp 3 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................ 5 ABSTRACT ...................................................................................................................... 6 CHAPTER I: A Review of Nitrile Biosynthesis and Degradation............................... 8 CHAPTER 2: Summary of the Present Study............................................................ 32 CHAPTER 3: Characterizing the Post-Translational Synthesis of the Active Site Complex of Nitrile Hydratase ...................................................................................... 43 CHAPTER 4: Development of an Assay to Determine the Means of Metal Specificity in Nitrile Hydratase ...................................................................................................... 66 REFERENCES ................................................................................................................74 Appendix A: A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through and Amide Intermediate ............................................................................................... 83 Appendix B: The Alpha Subunit of Nitrile Hydratase is Sufficient for Catalytic Activity and Post-Translational Modification ........................................................... 101 Appendix C: A Protein Derived Oxygen is the Source of the Amide Oxygen of Nitrile Hydratase ...........................................................................................................119 4 List of Figures Figure 1.1 A summary of the enzymatic pathways herein described for the synthesis and transformation of nitriles. 9 Figure 1.2 The biosynthetic pathway for the production of cyanogenic glycosides. 10 Figure 1.3 Mechanism of aldoxime dehydratase. 13 Figure 1.4 Mechanism of nitrile synthetase, ToyM. 16 Figure 1.5 Mechanism of nitrilase. 19 Figure 1.6 (A) Structure of the active site of cobalt-type nitrile hydratase (PDB 1IRE). (B) Mechanism of nitrile hydratase. 22 Figure 1.7 Mechanism of rhodanese. 25 Figure 1.8 Mechanism of cyanase. 28 Figure 1.9 Mechanism of nitrile reductase. 30 Figure 2.1 The structure of cobalt type nitrile hydratase. 35 Figure 2.2 Possible mechanisms of nitrile hydratase. 39 Figure 3.1 Possible series of intermediates in the route from apoTNH to holoTNH. 48 Figure 3.2 A comparison of the increase in the A) enzyme activity, B) ratio of abundance of holo enzyme to apo enzyme, and C) absorbance at 300 nm over the course of the activation assays. 56 Figure 3.3 Mass spectrum of TNH showing multiple charge states for the subunit of interest, ToyJ, as well as ToyK. 59 Figure 3.4 Mass spectra of TNH at various times throughout the activation process. 60 Figure 3.5 UV-visible spectra of apo-TNH activation assay over time. 62 Figure 3.6 EPR spectra of apo-TNH activated in vitro compared to that of enzyme expressed in cobalt-containing media and purified in holo form. 64 Figure 4.1 Structures of A) iron and B) cobalt type nitrile hydratases with the predictive amino acid pairs highlighted in red. 67 5 Abstract Nitrile-containing natural products are rare in Nature, and there have been very few studies on the mechanisms by which they are synthesized and utilized. The biosynthesis of 7-deazapurine containing natural products is a unique case whereby both formation of a nitrile and its conversion to an amide are documented. The overall theme of this work is to interrogate the biosynthesis of the nitrile intermediate in the pathway and its subsequent hydration to an amide. The biosynthesis 7-cyano-7-deazaguanine (preQ0), the key intermediate in the biosynthesis of the hypermodified base queuosine and the toyocamycin natural product, is accomplished by preQ0 synthetase through a series of unprecedented reactions whereby the carboxylate moiety of the substrate, 7-carboxy-7-deazaguanine (CDG), is successively activated by adenylation, reacted with ammonia, and dehydrated to produce the nitrile. This one-enzyme synthesis of a nitrile is unique as the only other known route to nitriles proceeds through at least two enzymes. Nitrile hydratases are metalloenzymes that selectively hydrate nitriles to the amide and are used industrially to produce acrylamide and nicotinamide. These enzymes use a trivalent iron or cobalt complex comprised of two backbone amidate ligands and three cysteine thiolate ligands of which two are modified to the sulfenato and sulfinato form. This work describes aspects of a particular nitrile hydratase, toyocamycin nitrile hydratase (TNH). Whereas most nitrile hydratases are heterodimeric, TNH is heterotrimeric, and yet what was discovered is that only the subunit containing the active site metal complex is required for activity. This single subunit analog of the protein was used for single turnover assays in 18O-labeled water to show with high resolution mass 6 spectrometry that the source of the product amide oxygen is actually the enzyme itself and likely the sulfenato ligand oxygen acting as a nucleophile. The mechanism of the active site complex synthesis is described showing that this is self-catalytic in the presence of cobalt(II) and molecular oxygen. 7 CHAPTER I A Review of Nitrile Biosynthesis and Degradation Abstract - The rarity of nitriles in biology is belied by the rich chemistry life has evolved to create and transform them. Nitrile containing compounds represent a small fraction of all those published, but reports of newly discovered nitrile containing compounds suggest the unique chemistry of this functional group has not gone unnoticed by evolution and may prove to have undiscovered importance. 1 Indeed the use of nitriles in pharmaceuticals for their incredibly small steric bulk and polarity is, like most advanced chemical inventions, probably already being used by life, and that importance is underscored by the presence of this functional group in essential modified RNA bases used in all kingdoms of life. 2,3,4 This chapter will focus on the varied means by which enzymes are utilized in biology to produce and transform nitriles. Nitrile Biosynthesis - Of the known nitrile containing natural products, there have only been two routes to their synthesis that have been described in mechanistic detail. The aldoxime pathway is the best characterized of those and is present in at least 2500 species of plants as well as some arthropods. 1, 5 It involves multiple enzymes and produces cyanogenic glycosides that can act as a defense mechanism. 6 These cyanogenic glycosides are normally stored in vacuoles but are released into the cytoplasm upon herbivory where they encounter glycosidases that convert them into α-hydroxy
Recommended publications
  • Metatranscriptomic Analysis of Community Structure And
    School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support.
    [Show full text]
  • Advances in Enzyme Biotechnology Advances in Enzyme Biotechnology
    Pratyoosh Shukla Brett I. Pletschke Editors Advances in Enzyme Biotechnology Advances in Enzyme Biotechnology Pratyoosh Shukla • Brett I. Pletschke Editors Advances in Enzyme Biotechnology Editors Pratyoosh Shukla Brett I. Pletschke Department of Microbiology Department of Biochemistry, Maharshi Dayanand University Microbiology and Biotechnology Rohtak, Haryana , India Rhodes University Grahamstown, South Africa ISBN 978-81-322-1093-1 ISBN 978-81-322-1094-8 (eBook) DOI 10.1007/978-81-322-1094-8 Springer New Delhi Heidelberg New York Dordrecht London Library of Congress Control Number: 2013945175 © Springer India 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
    Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Cloud-Based Analysis And
    UNIVERSITY OF CALIFORNIA Los Angeles Cloud-based Analysis and Integration of Proteomics and Metabolomics Datasets A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics by Jeong Ho (Howard) Choi 2019 © Copyright by Jeong Ho (Howard) Choi 2019 ABSTRACT OF THE DISSERTATION Cloud-based Analysis and Integration of Proteomics and Metabolomics Datasets by Jeong Ho (Howard) Choi Doctor of Philosophy in Bioinformatics University of California, Los Angeles, 2019 Professor Peipei Ping, Chair Our capabilities to define cardiovascular health and disease using highly multivariate “omics” datasets have substantially increased in recent years. Advances in acquisition technologies as well as bioinformatics methods have paved the way for ultimately resolving every biomolecule comprising various human “omes”. Understanding how different “omes” change and interact with one another temporally will ultimately unveil multi-omic molecular signatures that inform pathologic mechanisms, indicate disease phenotypes, and identify new therapeutic targets. Herein we describe a thesis project that creates novel, contemporary data science methods and workflows to extract temporal molecular signatures of disease from multi-omics analyses, and develops integrated omics knowledgebases for the cardiovascular community at-large. Chapter 1 provides an overview of cardiac physiology and pathophysiology involved in cardiac remodeling and heart failure (HF). A description of the systematic characterization of cardiac proteomes and metabolomes is included, including methodologies for multi-omics phenotyping. Finally, an overview of bioinformatics methods for driver molecule discovery is provided, discussing strategies for characterizing temporal patterns and conducting functional enrichment. ii Chapter 2 describes computational approaches to discern the oxidative posttranslational modification (O-PTM) proteome, an important factor in cardiac remodeling.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Genetic Characterisaton of Rhodococcus Rhodochrous ATCC
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Genetic characterization of Rhodococcus rhodochrous ATCC BAA-870 with emphasis on nitrile hydrolysing enzymes n ow Joni Frederick A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Departmentty of of MolecularCape and T Cell Biology, Universitysi of Cape Town er UnivSupervisor: Professor B. T. Sewell Co-supervisor: Professor D. Brady February 2013 Keywords Nitrile hydrolysis Biocatalysis Rhodococcus rhodochrous ATCC BAA-870 Genome sequencing Nitrilase Nitrile hydratase n ow ty of Cape T si er Univ ii Keywords Abstract Rhodococcus rhodochrous ATCC BAA-870 (BAA-870) had previously been isolated on selective media for enrichment of nitrile hydrolysing bacteria. The organism was found to have a wide substrate range, with activity against aliphatics, aromatics, and aryl aliphatics, and enantioselectivity towards beta substituted nitriles and beta amino nitriles, compounds that have potential applications in the pharmaceutical industry. This makes R. rhodochrous ATCC BAA-870 potentially a versatile biocatalyst for the synthesis of a broad range of compounds with amide and carboxylic acid groups that can be derived from structurally related nitrile precursors. The selectivity of biocatalysts allows for high product yields and better atom economyn than non- selective chemical methods of performing this reaction, suchow as acid or base hydrolysis.
    [Show full text]
  • Comparison of Nitrile Hydratases in Rhodococcus Rhodochrous DAP 96253 and DAP 96622 Growing on Inducing and Non- Inducing Media
    Georgia State University ScholarWorks @ Georgia State University Biology Dissertations Department of Biology Spring 4-26-2013 Comparison of Nitrile Hydratases in Rhodococcus Rhodochrous DAP 96253 and DAP 96622 Growing on Inducing and Non- Inducing Media Fengkun Du Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/biology_diss Recommended Citation Du, Fengkun, "Comparison of Nitrile Hydratases in Rhodococcus Rhodochrous DAP 96253 and DAP 96622 Growing on Inducing and Non-Inducing Media." Dissertation, Georgia State University, 2013. https://scholarworks.gsu.edu/biology_diss/130 This Dissertation is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. COMPARISON OF NITRILE HYDRATASES IN RHODOCOCCUS RHODOCHROUS DAP 96253 AND DAP 96622 GROWING ON INDUCING AND NON INDUCING MEDIA by FENGKUN DU Under the Direction of George E. Pierce ABSTRACT Nitrile hydratase activity in Rhodococcus rhodochrous DAP 96253 can be induced with multiple inducers that include urea, cobalt (Co), iron (Fe) and nickel (Ni). When induced with Co/urea, cells of R. rhodochrous DAP 96253 expressed the highest level of nitrile hydratase activity (~200 units/min·mg-cdw) when compared with the other inducers tested. Cells induced with Co had the second highest nitrile hydratase activity (~7 units/min·mg-cdw), whereas in the uninduced cells, nitrile hydratase activity was lower than 1 unit/min·mg-cdw. Similarly in R. rhodochrous DAP 96622, when induced with Co/urea, the nitrile hydratase activity of R.
    [Show full text]
  • Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria
    Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria Thesis Submitted to Savitribai Phule Pune University For The Degree Of DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY By Ketaki Dilip Shurpali Research Supervisor Dr. Dhiman Sarkar Combichem Bioresource Center Organic Chemistry Division CSIR-National Chemical Laboratory Pune-411008 India October 2014 Certificate This is to certify that the work incorporated in the thesis entitled “ Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria ” submitted by Ketaki Dilip Shurpali was carried out under my supervision at Combichem Bioresource Center, Organic Chemistry Division, National Chemical Laboratory, Pune-411008, Maharashtra, India. Materials obtained from other sources have been duly acknowledged in the thesis. Dr. Dhiman Sarkar (Research Guide) I Declaration by Research Scholar I hereby declare that the thesis entitled " Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria ", submitted for the Degree of Doctor of Philosophy to the Savitribai Phule Pune University, has been carried out by me at Combichem Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, Maharashtra, India, under the supervision of Dr. Dhiman Sarkar (Research supervisor). The work is original and has not been submitted in part or full by me for any other degree or diploma to any other University. Ketaki Dilip Shurpali (Research Scholar) II Dedications This thesis is dedicated to all those people who were always besides me in my good and bad times. First dedication goes to my father Mr. Dilip Shurpali and mother Mrs. Devyani Shurpali who instilled in me the desire to learn new things and confidence to achieve my dreams.
    [Show full text]
  • Nitrogen Metabolism in Mycobacterium Smegmatis
    Nitrogen metabolism in Mycobacterium smegmatis Michael Petridis Dipl. Biol. (Goethe University Frankfurt) University of Otago June 30th 2015 This dissertation is submitted in publication format for the degree of Doctor of Philosophy. Declaration This dissertation is the result of my own work and contains nothing, which is the outcome of work done in collaboration with others, except where clearly stated. No part of this dissertation has been submitted for any other degree or qualification. This research project was undertaken in the laboratory of Prof. Gregory M. Cook at the Department of Microbiology and Immunology, University of Otago in Dunedin, New Zealand between July 2012 and June 2015. A portion of this research was also performed in the laboratory of Prof. Stewart T. Cole at the École Polytechnique Fédérale de Lausanne in Lausanne, Switzerland in December 2013. i Thesis by Publication Format This dissertation has been submitted by publication format. The Otago School of Medical Sciences and the Department of Microbiology & Immunology provided consultation on how to submit by this format. This thesis is presented in accordance with their guidelines. Each of the three results chapters are primary research papers that have been submitted, or prepared for publication. The extended introduction and summary sections were written specifically for this thesis. They serve to place this work in a wider context and bring together the findings as a whole. In accordance with requirements, each chapter has been reformatted for consistency. I took the leading role in the work presented here. For each study, I planned experiments, performed research and interpreted data. I wrote the majority of each manuscript.
    [Show full text]
  • Thiocyanate and Organic Carbon Inputs Drive Convergent Selection for Specific Autotrophic Afipia and Thiobacillus Strains Within Complex Microbiomes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.29.067207; this version posted April 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Thiocyanate and organic carbon inputs drive convergent selection for specific autotrophic Afipia and Thiobacillus strains within complex microbiomes Robert J. Huddy1,2, Rohan Sachdeva3, Fadzai Kadzinga1,2, Rose Kantor4, Susan T.L. Harrison1,2 and Jillian F. Banfield3,4,5,6* 1The Center for Bioprocess Engineering Research, University of Cape Town, South Africa 2The Future Water Institute, University of Cape Town, South Africa 3The Innovative Genomics Institute at the University of California, Berkeley, California, USA 4The Department of Earth and Planetary Science, University of California, Berkeley, California, USA 5The Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA 6The University of Melbourne, Victoria, Australia *Corresponding Author: [email protected] Abstract Thiocyanate (SCN-) contamination threatens aquatic ecosystems and pollutes vital fresh water supplies. SCN- degrading microbial consortia are commercially deployed for remediation, but the impact of organic amendments on selection within SCN- degrading microbial communities has not been investigated. Here, we tested whether specific strains capable of degrading SCN- could be reproducibly selected for based on SCN- loading and the presence or absence of added organic carbon. Complex microbial communities derived from those used to treat SCN- contaminated water were exposed to systematically increased input SCN concentrations in molasses-amended and -unamended reactors and in reactors switched to unamended conditions after establishing the active SCN- degrading consortium.
    [Show full text]
  • (Title of the Thesis)*
    Deciphering the Indoleacetic Acid Biosynthesis Pathways in the Rhizobacterium Pseudomonas sp. UW4 by Daiana Duca A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Biology Waterloo, Ontario, Canada, 2017 ©Daiana Duca 2017 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. Dr. Bernard Glick Professor Ph. D. Supervisor Dr. David Rose Professor Ph. D Co-Supervisor Dr. Kirsten Muller Professor Ph. D. Thesis Examination Committee Member Dr. Trevor Charles Professor Ph. D. Thesis Examination Committee Member Dr. Raymond Legge Professor Ph. D. Internal External Thesis Examination Committee Member Department of Chemical Engineering University of Waterloo Dr. Manish Raizada Professor Ph. D External Thesis Examination Committee Member Department of Plant Agriculture University of Guelph Guelph, ON. ii Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Healthy plants host, within and on the surfaces of their tissues, diverse endophytic and epiphytic bacteria. Often, this interaction is mutualistic, leading to adaptive benefits for both partners. We refer to these beneficial microbes as plant growth-promoting bacteria (PGPB), as they can have a tremendous positive influence on plant health, yield and productivity. PGPBs can be used as natural biofertilizers to promote plant growth in an environmentally responsible manner.
    [Show full text]
  • Downloaded from Uniprotkb/Swiss-Prot ( and Concatenated with the Reverse One
    International Journal of Molecular Sciences Article Root Proteomic Analysis of Two Grapevine Rootstock Genotypes Showing Different Susceptibility to Salt Stress Bhakti Prinsi , Osvaldo Failla , Attilio Scienza and Luca Espen * Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; [email protected] (B.P.); [email protected] (O.F.); [email protected] (A.S.) * Correspondence: [email protected]; Tel.: +39-02-503-16610 Received: 21 December 2019; Accepted: 4 February 2020; Published: 6 February 2020 Abstract: Salinity represents a very limiting factor that affects the fertility of agricultural soils. Although grapevine is moderately susceptible to salinity, both natural causes and agricultural practices could worsen the impact of this abiotic stress. A promising possibility to reduce this problem in vineyards is the use of appropriate graft combinations. The responses of grapevine rootstocks to this abiotic stress at the root level still remain poorly investigated. In order to obtain further information on the multifaceted responses induced by salt stress at the biochemical level, in the present work we analyzed the changes that occurred under control and salt conditions in the root proteomes of two grapevine rootstock genotypes, M4 and 101.14. Moreover, we compared the results considering that M4 and 101.14 were previously described to have lower and higher susceptibility to salt stress, respectively. This study highlighted the greater capability of M4 to maintain and adapt energy metabolism (i.e., synthesis of ATP and NAD(P)H) and to sustain the activation of salt-protective mechanisms (i.e., Na sequestration into the vacuole and synthesis of osmoprotectant compounds).
    [Show full text]