Chapter 16 on Cosmology

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 16 on Cosmology 45039_16_p1-31 10/20/04 8:12 AM Page 1 16 Cosmology Chapter Outline 16.1 Epochs of the Big Bang Evidence from Observational 16.2 Observation of Radiation from the Astronomy Primordial Fireball Hubble and Company Observe Galaxies 16.3 Spectrum Emitted by a Receding What the Hubble Telesope Found New Blackbody Evidence from Exploding Stars 16.4 Ripples in the Microwave Bath Big Bang Nucleosynthesis ⍀ What Caused the CMB Ripples? Critical Density, m, and Dark Matter The Horizon Problem 16.6 Freidmann Models and the Age of Inflation the Universe Sound Waves in the Early Universe 16.7 Will the Universe Expand Forever? 16.5 Other Evidence for the Expanding Universe 16.8 Problems and Perspectives One of the most exciting and rapidly developing areas in all of physics is cosmology, the study of the origin, content, form, and time evolution of the Universe. Initial cosmological speculations of a homogeneous, eternal, static Universe with constant average separation of clumps of matter on a very large scale were rather staid and dull. Now, however, proof has accumulated of a sur- prising expanding Universe with a distinct origin in time 14 billion years ago! In the past 50 years interesting and important refinements in the expansion rate (recession rate of all galaxies from each other) have been confirmed: a very rapid early expansion (inflation) filling the Universe with an extremely uniform distribution of radiation and matter, a decelerating period of expan- sion dominated by gravitational attraction in which galaxies had time to form yet still moved apart from each other, and finally, a preposterous application of the accelerator to the cosmic car about 5 billion years ago so that galaxies are currently accelerating away from each other again. In this chapter we ex- plore the experimental evidence for these ideas. We also speculate on the causes of a slower or faster expansion rate. These include familiar forms of matter and energy as well as unusual forms like dark cold matter and dark en- ergy, which produces gravitational repulsion. 1 45039_16_p1-31 10/20/04 8:12 AM Page 2 2 CHAPTER 16 COSMOLOGY 16.1 EPOCHS OF THE BIG BANG In this chapter we describe one of the most fascinating theories in all of science—the Big Bang theory of the creation of the Universe—and the ex- perimental evidence that supports it. This theory of cosmology states that the Universe had a beginning and erupted from an extremely dense, pointlike sin- gularity about 14 billion years ago.1 Such an extreme of energy occurred in the first few instants after the Big Bang that it is believed that all four interac- tions of physics were unified and that all matter melted down into an undiffer- entiated “quark-gluon primordial soup.” Figure 16.1 shows the evolution of the four fundamental forces from the Big Bang to the present. During the first 10Ϫ43 s (the ultrahot epoch during which T Ϸ 1032 K), it is presumed that the strong, electroweak, and gravitational forces were joined to form a completely unified force. In the first 10Ϫ35 s fol- lowing the Big Bang (the hot epoch, T Ϸ 1029 K), gravity broke free of this uni- fication while the strong and electroweak forces remained joined. This was a period when particle energies were so great (Ͼ1016 GeV) that very massive par- ticles such as those predicted by Supersymmetry (see Section 15.12) as well as quarks, leptons, and their antiparticles existed. Then, after 10Ϫ35 s, the Uni- verse rapidly expanded and cooled (the warm epoch, T ϭ 10 29 to 1015 K) and the strong and electroweak forces parted company. As the Universe continued to cool, the electroweak force split into the weak force and the electromagnetic force about 10Ϫ10 s after the Big Bang. After a few more minutes, protons and neutrons condensed out of the cooling quark-gluon plasma. During the first half-hour of creation, the temperature was probably about 1010 K and the Universe could be viewed as a cosmic thermonuclear bomb fus- ing protons and neutrons into deuterium and then helium, producing most of Protons and Nuclei can form Quarks and leptons neutrons can form Atoms can form Gravitational Gravitation Strong force Weak force Strong and electroweak Unified Two Electroweak Three Electromagnetic force force forces forces Four forces 10–40 10–30 10–20 10–10 100 1010 1020 Big Bang Age of the Universe (s) Present age of Universe Figure 16.1 A brief history of the Universe from the Big Bang to the present. The four forces became distinguishable during the first nanosecond. Following this, all the quarks combined to form particles that interact via the nuclear force. However, the lep- tons remained separate and to this day exist as individual, observable particles. 1Data from the Wilkinson Microwave Anisotropy Probe in 2003 pinpointed the age of the Universe at 13.7 Ϯ 0.2 billion years (“WMAP Spacecraft Maps the Entire Cosmic Microwave Sky with Unprecedented Precision,” Physics Today, April 2003, 56(4): pp. 21–24.) 45039_16_p1-31 10/20/04 8:12 AM Page 3 16.2 OBSERVATION OF RADIATION FROM THE PRIMORDIAL FIREBALL 3 H atoms + protons, deuterium and helium nuclei – electrons photons – + – + + – + – – + + + – – – + + – + – + – + – – R + + + + Earth – – – – + – + + + + Figure 16.2 George Gamow, – ––+ 1904–1968, Russian-American physicist. Gamow and two of his students, Ralph Alpher and Expanding shell Robert Herman, were the first of charged (a) particles (b) to take the first half-hour of the Universe seriously. In a mostly Figure 16.3 Radiation- and matter-dominated stages in the evolution of the Universe. overlooked paper published in Ͼ Ͻ (a) The radiation-dominated stage (T 3000 K, age 400,000 years) is an expanding 1948, they made truly remark- Universe filled with protons, electrons, neutrons, photons, and neutrinos. Charged par- able cosmological predictions. ticles continually scatter photons, ensuring thermal equilibrium of radiation and mat- They correctly calculated the Ͻ Ͼ ter. (b) The matter-dominated state (T 3000 K, age 400,000 years). Hydrogen abundances of hydrogen and atoms form, making the Universe transparent to photons. Photons emitted from an ex- helium after the first half-hour ≈ panding ion shell at R 14 billion lightyears are currently seen on Earth enormously (75% H and 25% He) and pre- Doppler-shifted to the red. dicted that radiation from the Big Bang should still be pre- sent, with an apparent tempera- the helium nuclei that now exist. (See Fig. 16.2.) Until about 400,000 years ture of about 5 K. In Gamow’s after the Big Bang, the Universe was dominated by radiation. Energetic pho- own words, the Universe’s sup- ply of hydrogen and helium tons prevented matter from forming clumps, or even single hydrogen and he- were created very quickly, “in lium atoms, because photon-atom collisions would instantly ionize any atoms less time than it takes to cook a that happened to form. In addition, photons experienced continuous Comp- dish of duck and roast pota- ton scattering from vast numbers of free electrons, resulting in a universe that toes.” The comment is charac- was opaque to electromagnetic radiation. By the time the Universe was about teristic of this interesting physi- 400,000 years old—it had expanded to one-thousandth of its current size and cist, who is known as much for cooled to about 3000 K—electrons could bind to protons and helium nuclei his explanation of alpha decay to form atoms. Because of the drastic reduction in free charged particles, far and his theories of cosmology fewer photons were absorbed or scattered, and the Universe suddenly became as for his delightful popular transparent to photons. Radiation no longer dominated the Universe, and books, his cartoons, and his clumps of neutral matter steadily grew—first atoms, then molecules, gas wonderful sense of humor. A classic Gamow story holds that, clouds, stars, and finally galaxies. The state of affairs for radiation- and matter- having coauthored a paper with dominated periods is shown in Figure 16.3. Alpher, he made Hans Bethe an honorary author so that the credits would read “Alpher, 16.2 OBSERVATION OF RADIATION FROM THE Bethe, and Gamow” (to resem- PRIMORDIAL FIREBALL ble the Greek letters ␣, ␤, and ␥). (AIP Emilio Segre Visual In 1965, Arno A. Penzias and Robert W. Wilson of Bell Laboratories were Archives) testing a sensitive microwave receiver and made an amazing discovery. A pesky 45039_16_p1-31 10/20/04 8:12 AM Page 4 4 CHAPTER 16 COSMOLOGY Figure 16.4 Robert W. Wilson (left) and Arno A. Penzias with the Bell Telephone Laboratories horn-reflector antenna. (AIP Emilio Segre Visual Archives/Physics Today Collection) signal that produced a faint background hiss was interfering with their satellite communications experiments. Despite their valiant efforts, the signal remained. Ultimately it became clear that they were detecting microwave back- ground radiation (at a wavelength of 7.35 cm) that represented some of the leftover electromagnetic “glow” from the Big Bang. The microwave horn that served as their receiving antenna is shown in Figure 16.4. The intensity of the detected signal remained unchanged as the antenna was pointed in different directions. The fact that the radiation had equal strengths in all directions suggested that the entire Universe was the source of this radiation. Booting a flock of pigeons from the 20-foot horn and cooling the microwave detector both failed to remove the “spurious” signal. Through a casual conversation, Penzias and Wilson discovered that a group at Princeton had predicted the residual radiation from the Big Bang and were planning an experiment to confirm their theory. The excitement in the scien- tific community was high when Penzias and Wilson announced that they had already observed an excess microwave background of a 3-K blackbody source, which was the predicted temperature of the cooled, residual Big Bang radia- tion at the present time.
Recommended publications
  • Birth of De Sitter Universe from a Time Crystal Universe
    PHYSICAL REVIEW D 100, 123531 (2019) Birth of de Sitter universe from a time crystal universe † Daisuke Yoshida * and Jiro Soda Department of Physics, Kobe University, Kobe 657-8501, Japan (Received 30 September 2019; published 18 December 2019) We show that a simple subclass of Horndeski theory can describe a time crystal universe. The time crystal universe can be regarded as a baby universe nucleated from a flat space, which is mediated by an extension of Giddings-Strominger instanton in a 2-form theory dual to the Horndeski theory. Remarkably, when a cosmological constant is included, de Sitter universe can be created by tunneling from the time crystal universe. It gives rise to a past completion of an inflationary universe. DOI: 10.1103/PhysRevD.100.123531 I. INTRODUCTION Euler-Lagrange equations of motion contain up to second order derivatives. Actually, bouncing cosmology in the Inflation has succeeded in explaining current observa- Horndeski theory has been intensively investigated so far tions of the large scale structure of the Universe [1,2]. [23–29]. These analyses show the presence of gradient However, inflation has a past boundary [3], which could be instability [30,31] and finally no-go theorem for stable a true initial singularity or just a coordinate singularity bouncing cosmology in Horndeski theory was found for the depending on how much the Universe deviates from the spatially flat universe [32]. However, it was shown that the exact de Sitter [4], or depending on the topology of the no-go theorem does not hold when the spatial curvature is Universe [5].
    [Show full text]
  • Expanding Space, Quasars and St. Augustine's Fireworks
    Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible.
    [Show full text]
  • On Asymptotically De Sitter Space: Entropy & Moduli Dynamics
    On Asymptotically de Sitter Space: Entropy & Moduli Dynamics To Appear... [1206.nnnn] Mahdi Torabian International Centre for Theoretical Physics, Trieste String Phenomenology Workshop 2012 Isaac Newton Institute , CAMBRIDGE 1 Tuesday, June 26, 12 WMAP 7-year Cosmological Interpretation 3 TABLE 1 The state of Summarythe ofart the cosmological of Observational parameters of ΛCDM modela Cosmology b c Class Parameter WMAP 7-year ML WMAP+BAO+H0 ML WMAP 7-year Mean WMAP+BAO+H0 Mean 2 +0.056 Primary 100Ωbh 2.227 2.253 2.249−0.057 2.255 ± 0.054 2 Ωch 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036 +0.030 ΩΛ 0.729 0.728 0.727−0.029 0.725 ± 0.016 ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012 τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014 2 d −9 −9 −9 −9 ∆R(k0) 2.42 × 10 2.42 × 10 (2.43 ± 0.11) × 10 (2.430 ± 0.091) × 10 +0.030 Derived σ8 0.809 0.810 0.811−0.031 0.816 ± 0.024 H0 70.3km/s/Mpc 70.4km/s/Mpc 70.4 ± 2.5km/s/Mpc 70.2 ± 1.4km/s/Mpc Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016 Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015 2 +0.0056 Ωmh 0.1338 0.1347 0.1345−0.0055 0.1352 ± 0.0036 e zreion 10.4 10.3 10.6 ± 1.210.6 ± 1.2 f t0 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP[WMAP-7likelihood 1001.4538] code.
    [Show full text]
  • Galaxy Formation Within the Classical Big Bang Cosmology
    Galaxy formation within the classical Big Bang Cosmology Bernd Vollmer CDS, Observatoire astronomique de Strasbourg Outline • some basics of astronomy small structure • galaxies, AGNs, and quasars • from galaxies to the large scale structure of the universe large • the theory of cosmology structure • measuring cosmological parameters • structure formation • galaxy formation in the cosmological framework • open questions small structure The architecture of the universe • Earth (~10-9 ly) • solar system (~6 10-4 ly) • nearby stars (> 5 ly) • Milky Way (~6 104 ly) • Galaxies (>2 106 ly) • large scale structure (> 50 106 ly) How can we investigate the universe Astronomical objects emit elctromagnetic waves which we can use to study them. BUT The earth’s atmosphere blocks a part of the electromagnetic spectrum. need for satellites Back body radiation • Opaque isolated body at a constant temperature Wien’s law: sun/star (5500 K): 0.5 µm visible human being (310 K): 9 µm infrared molecular cloud (15 K): 200 µm radio The structure of an atom Components: nucleus (protons, neutrons) + electrons Bohr’s model: the electrons orbit around the nucleus, the orbits are discrete Bohr’s model is too simplistic quantum mechanical description The emission of an astronomical object has 2 components: (i) continuum emission + (ii) line emission Stellar spectra Observing in colors Usage of filters (Johnson): U (UV), B (blue), V (visible), R (red), I (infrared) The Doppler effect • Is the apparent change in frequency and wavelength of a wave which is emitted by
    [Show full text]
  • FRW Cosmology
    17/11/2016 Cosmology 13.8 Gyrs of Big Bang History Gravity Ruler of the Universe 1 17/11/2016 Strong Nuclear Force Responsible for holding particles together inside the nucleus. The nuclear strong force carrier particle is called the gluon. The nuclear strong interaction has a range of 10‐15 m (diameter of a proton). Electromagnetic Force Responsible for electric and magnetic interactions, and determines structure of atoms and molecules. The electromagnetic force carrier particle is the photon (quantum of light) The electromagnetic interaction range is infinite. Weak Force Responsible for (beta) radioactivity. The weak force carrier particles are called weak gauge bosons (Z,W+,W‐). The nuclear weak interaction has a range of 10‐17 m (1% of proton diameter). Gravity Responsible for the attraction between masses. Although the gravitational force carrier The hypothetical (carrier) particle is the graviton. The gravitational interaction range is infinite. By far the weakest force of nature. 2 17/11/2016 The weakest force, by far, rules the Universe … Gravity has dominated its evolution, and determines its fate … Grand Unified Theories (GUT) Grand Unified Theories * describe how ∑ Strong ∑ Weak ∑ Electromagnetic Forces are manifestations of the same underlying GUT force … * This implies the strength of the forces to diverge from their uniform GUT strength * Interesting to see whether gravity at some very early instant unifies with these forces ??? 3 17/11/2016 Newton’s Static Universe ∑ In two thousand years of astronomy, no one ever guessed that the universe might be expanding. ∑ To ancient Greek astronomers and philosophers, the universe was seen as the embodiment of perfection, the heavens were truly heavenly: – unchanging, permanent, and geometrically perfect.
    [Show full text]
  • “De Sitter Effect” in the Rise of Modern Relativistic Cosmology
    The role played by the “de Sitter effect” in the rise of modern relativistic cosmology ● Matteo Realdi ● Department of Astronomy, Padova ● Sait 2009. Pisa, 7-5-2009 Table of contents ● Introduction ● 1917: Einstein, de Sitter and the universes of General Relativity ● 1920's: the debates on the “de Sitter effect”. The connection between theory and observation and the rise of scientific cosmology ● 1930: the expanding universe and the decline of the interest in the de Sitter effect ● Conclusion 1 - Introduction ● Modern cosmology: study of the origin, structure and evolution of the universe as a whole, based on the interpretation of astronomical observations at different wave- lengths through the laws of physics ● The early years: 1917-1930. Extremely relevant period, characterized by new ideas, discoveries, controversies, in the light of the first comparison of theoretical world-models with observations at the turning point of relativity revolution ● Particular attention on the interest in the so-called “de Sitter effect”, a theoretical redshift-distance relation which is predicted through the line element of the empty universe of de Sitter ● The de Sitter effect: fundamental influence in contributions that scientists as de Sitter, Eddington, Weyl, Lanczos, Lemaître, Robertson, Tolman, Silberstein, Wirtz, Lundmark, Stromberg, Hubble offered during the 1920's both in theoretical and in observational cosmology (emergence of the modern approach of cosmologists) ➔ Predictions and confirmations of an appropriate redshift- distance relation marked the tortuous process towards the change of viewpoint from the 1917 paradigm of a static universe to the 1930 picture of an expanding universe evolving both in space and in time 2 - 1917: the Universes of General Relativity ● General relativity: a suitable theory in order to describe the whole of space, time and gravitation? ● Two different metrics, i.e.
    [Show full text]
  • AST4220: Cosmology I
    AST4220: Cosmology I Øystein Elgarøy 2 Contents 1 Cosmological models 1 1.1 Special relativity: space and time as a unity . 1 1.2 Curvedspacetime......................... 3 1.3 Curved spaces: the surface of a sphere . 4 1.4 The Robertson-Walker line element . 6 1.5 Redshifts and cosmological distances . 9 1.5.1 Thecosmicredshift . 9 1.5.2 Properdistance. 11 1.5.3 The luminosity distance . 13 1.5.4 The angular diameter distance . 14 1.5.5 The comoving coordinate r ............... 15 1.6 TheFriedmannequations . 15 1.6.1 Timetomemorize! . 20 1.7 Equationsofstate ........................ 21 1.7.1 Dust: non-relativistic matter . 21 1.7.2 Radiation: relativistic matter . 22 1.8 The evolution of the energy density . 22 1.9 The cosmological constant . 24 1.10 Some classic cosmological models . 26 1.10.1 Spatially flat, dust- or radiation-only models . 27 1.10.2 Spatially flat, empty universe with a cosmological con- stant............................ 29 1.10.3 Open and closed dust models with no cosmological constant.......................... 31 1.10.4 Models with more than one component . 34 1.10.5 Models with matter and radiation . 35 1.10.6 TheflatΛCDMmodel. 37 1.10.7 Models with matter, curvature and a cosmological con- stant............................ 40 1.11Horizons.............................. 42 1.11.1 Theeventhorizon . 44 1.11.2 Theparticlehorizon . 45 1.11.3 Examples ......................... 46 I II CONTENTS 1.12 The Steady State model . 48 1.13 Some observable quantities and how to calculate them . 50 1.14 Closingcomments . 52 1.15Exercises ............................. 53 2 The early, hot universe 61 2.1 Radiation temperature in the early universe .
    [Show full text]
  • A Brief Analysis of De Sitter Universe in Relativistic Cosmology
    Munich Personal RePEc Archive A Brief Analysis of de Sitter Universe in Relativistic Cosmology Mohajan, Haradhan Assistant Professor, Premier University, Chittagong, Bangladesh. 18 June 2017 Online at https://mpra.ub.uni-muenchen.de/83187/ MPRA Paper No. 83187, posted 10 Dec 2017 23:44 UTC Journal of Scientific Achievements, VOLUME 2, ISSUE 11, NOVEMBER 2017, PAGE: 1-17 A Brief Analysis of de Sitter Universe in Relativistic Cosmology Haradhan Kumar Mohajan Premier University, Chittagong, Bangladesh E-mail: [email protected] Abstract The de Sitter universe is the second model of the universe just after the publications of the Einstein’s static and closed model. In 1917, Wilhelm de Sitter has developed this model which is a maximally symmetric solution of the Einstein field equation with zero density. The geometry of the de Sitter universe is theoretically more complicated than that of the Einstein universe. The model does not contain matter or radiation. But, it predicts that there is a redshift. This article tries to describe the de Sitter model in some detail but easier mathematical calculations. In this study an attempt has been taken to provide a brief discussion of de Sitter model to the common readers. Keywords: de Sitter space-time, empty matter universe, redshifts. 1. Introduction The de Sitter space-time universe is one of the earliest solutions to Einstein’s equation of motion for gravity. It is a matter free and fully regular solution of Einstein’s equation with positive 3 cosmological constant , where S is the scale factor. After the publications of the S 2 Einstein’s static and closed universe model a second static model of the static and closed but, empty of matter universe was suggested by Dutch astronomer Wilhelm de Sitter (1872–1934).
    [Show full text]
  • The Inflationary Universe
    Rep. Prog. Phys., Vol 47, pp 925-986, 1984. Printed in Great Britain The inflationary universe A D Linde I E Tamm Department of Theoretical Physics, P N Lebedev Physical Institute, Academy of Sciences of the USSR, Moscow 117924, USSR Abstract According to the inflationary universe scenario the universe in the very early stages of its evolution was exponentially expanding in the unstable vacuum-like state. At the end of the exponential expansion (inflation) the energy of the unstable vacuum (of a classical scalar field) transforms into the energy of hot dense matter, and the subsequent evolution of the universe is described by the usual hot universe theory. Recently it was realised that the exponential expansion during the very early stages of evolution of the universe naturally occurs in a wide class of realistic theories of elementary particles. The inflationary universe scenario makes it possible to obtain a simple solution to many longstanding cosmological problems and leads to a crucial modification of the standard point of view of the large-scale structure of the universe. This review was received in February 1984. 0034-4885/84/080925 +62$09.00 @ 1984 The Institute of Physics 925 926 A D Linde Contents Page 1. Introduction 927 2. Spontaneous symmetry breaking in gauge theories 930 3. Phase transitions in gauge theories 934 4. The standard hot universe scenario 936 5 . Problems of the standard scenario 939 5.1. The singularity problem 939 5.2. The flatness problem 939 5.3. The homogeneity and isotropy problems 940 5.4. The horizon problem 940 5.5.
    [Show full text]
  • Thermodynamics of Cosmological Matter Creation I
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 7428-7432, October 1988 Physics Thermodynamics of cosmological matter creation I. PRIGOGINE*t, J. GEHENIAUt, E. GUNZIGt, AND P. NARDONEt *Center for Statistical Mechanics, University of Texas, Austin, TX 78712; and tFree University of Brussels, Brussels, Belgium Contributed by I. Prigogine, June 3, 1988 ABSTRACT A type of cosmological history that includes ergy of these produced particles is then extracted from that large-scale entropy production is proposed. These cosmologies of the (classical) gravitational field (1-4). But these semiclas- are based on reinterpretation of the matter-energy stress ten- sical Einstein equations are adiabatic and reversible as well, sor in Einstein's equations. This modifies the usual adiabatic and consequently they are unable to provide the entropy energy conservation laws, thereby including irreversible mat- burst accompanying the production of matter. Moreover, the ter creation. This creation corresponds to an irreversible ener- quantum nature of these equations renders the various re- gy flow from the gravitational field to the created matter con- sults highly sensitive to quantum subtleties in curved space- stituents. This point of view results from consideration of the times such as the inevitable subtraction procedures. thermodynamics ofopen systems in the framework ofcosmolo- The aim of the present work is to overcome these prob- gy. It is shown that the second law of thermodynamics requires lems and present a phenomenological model of the origin of that space-time transforms into matter, while the inverse the instability leading from the Minkowskian vacuum to the transformation is forbidden. It appears that the usual initial present universe.
    [Show full text]
  • Building an Inflationary Model of the Universe
    Imperial College London Department of Theoretical Physics Building an Inflationary Model of the Universe Dominic Galliano September 2009 Supervised by Dr. Carlo Contaldi Submitted in part fulfilment of the requirements for the degree of Master of Science in Theoretical Physics of Imperial College London and the Diploma of Imperial College London Abstract The start of this dissertation reviews the Big Bang model and its associated problems. Inflation is then introduced as a model which contains solutions to these problems. It is developed as an additional aspect of the Big Bang model itself. The final section shows how one can link inflation to the Large Scale Structure in the universe, one of the most important pieces of evidence for inflation. i Dedicated to my Mum and Dad, who have always supported me in whatever I do, even quitting my job to do this MSc and what follows. Thanks to Dan, Ali and Dr Contaldi for useful discussions and helping me understand the basics. Thanks to Sinead, Ax, Benjo, Jerry, Mike, James, Paul, Valentina, Mike, Nick, Caroline and Matthias for not so useful discussions and endless card games. Thanks to Lee for keeping me sane. ii Contents 1 Introduction 1 1.1 The Big Bang Model . 1 1.2 Inflation . 3 2 Building a Model of the Universe 5 2.1 Starting Principles . 5 2.2 Geometry of the Universe . 6 2.3 Introducing matter into the universe . 11 2.3.1 The Newtonian Picture . 11 2.3.2 Introducing Relativity . 14 2.4 Horizons and Patches . 19 2.5 Example: The de Sitter Universe .
    [Show full text]
  • Discovery of Hubble's Law: an Example of Type III Error
    1 Discovery of Hubble’s Law: an Example of Type III Error Ari Belenkiy Department of Statistics, Simon Fraser University, British Columbia, Canada Abstract Recently much attention has been paid to the discovery of Hubble’s law – the linear relation between the rate of recession of the distant galaxies and distance to them. Though we now mention several names associated with this law instead of one, the motivation of each remains somewhat obscure. As it is turns out, two major contributors arrived at their discoveries from erroneous reasoning , thus making a case for a Type III error. It appears that Lemaitre (1927) theoretically derived Hubble’s Law due to his choice of the wrong scenario of the Universe’s evolution. Hubble (1929) tested the linearity law not based on Lemaitre’s non-static model, but rather a cumbersome extension of de Sitter’s static theory proposed by Weyl (1923) and Silberstein (1924). Introduction Though a conference was called at Flagstaff in 2012 to celebrate the centennial of V. Slipher’s discovery of spectral shifts, little attention was given to the fact that in 1912 Slipher discovered only the blue-shift of the nearby Andromeda nebulae, which could hardly surprise (at least in hindsight) anyone familiar with gravitation theory. His truly surprising discovery of the spectral red-shifts, that later became a beacon for the discovery of the expansion of the Universe, occurred later, in 1913-1914. Thus, the proper date to celebrate is August 1, 1914, when the AAS met Slipher’s report with a standing ovation. Slipher While Slipher interpreted the Andromeda nebulae’s blue-shift as a Doppler Effect caused by the nebulae’s drift with respect to the Milky Way, as “we have no other interpretation for it,”1 later, on discovering the red-shifts, he again suggested that the 2 red-shifts might be due to the Milky Way’s motion relative to the system of spiral nebulae.
    [Show full text]