Entropy Production and the Maximum Entropy of the Universe †
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Birth of De Sitter Universe from a Time Crystal Universe
PHYSICAL REVIEW D 100, 123531 (2019) Birth of de Sitter universe from a time crystal universe † Daisuke Yoshida * and Jiro Soda Department of Physics, Kobe University, Kobe 657-8501, Japan (Received 30 September 2019; published 18 December 2019) We show that a simple subclass of Horndeski theory can describe a time crystal universe. The time crystal universe can be regarded as a baby universe nucleated from a flat space, which is mediated by an extension of Giddings-Strominger instanton in a 2-form theory dual to the Horndeski theory. Remarkably, when a cosmological constant is included, de Sitter universe can be created by tunneling from the time crystal universe. It gives rise to a past completion of an inflationary universe. DOI: 10.1103/PhysRevD.100.123531 I. INTRODUCTION Euler-Lagrange equations of motion contain up to second order derivatives. Actually, bouncing cosmology in the Inflation has succeeded in explaining current observa- Horndeski theory has been intensively investigated so far tions of the large scale structure of the Universe [1,2]. [23–29]. These analyses show the presence of gradient However, inflation has a past boundary [3], which could be instability [30,31] and finally no-go theorem for stable a true initial singularity or just a coordinate singularity bouncing cosmology in Horndeski theory was found for the depending on how much the Universe deviates from the spatially flat universe [32]. However, it was shown that the exact de Sitter [4], or depending on the topology of the no-go theorem does not hold when the spatial curvature is Universe [5]. -
Expanding Space, Quasars and St. Augustine's Fireworks
Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible. -
On Asymptotically De Sitter Space: Entropy & Moduli Dynamics
On Asymptotically de Sitter Space: Entropy & Moduli Dynamics To Appear... [1206.nnnn] Mahdi Torabian International Centre for Theoretical Physics, Trieste String Phenomenology Workshop 2012 Isaac Newton Institute , CAMBRIDGE 1 Tuesday, June 26, 12 WMAP 7-year Cosmological Interpretation 3 TABLE 1 The state of Summarythe ofart the cosmological of Observational parameters of ΛCDM modela Cosmology b c Class Parameter WMAP 7-year ML WMAP+BAO+H0 ML WMAP 7-year Mean WMAP+BAO+H0 Mean 2 +0.056 Primary 100Ωbh 2.227 2.253 2.249−0.057 2.255 ± 0.054 2 Ωch 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036 +0.030 ΩΛ 0.729 0.728 0.727−0.029 0.725 ± 0.016 ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012 τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014 2 d −9 −9 −9 −9 ∆R(k0) 2.42 × 10 2.42 × 10 (2.43 ± 0.11) × 10 (2.430 ± 0.091) × 10 +0.030 Derived σ8 0.809 0.810 0.811−0.031 0.816 ± 0.024 H0 70.3km/s/Mpc 70.4km/s/Mpc 70.4 ± 2.5km/s/Mpc 70.2 ± 1.4km/s/Mpc Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016 Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015 2 +0.0056 Ωmh 0.1338 0.1347 0.1345−0.0055 0.1352 ± 0.0036 e zreion 10.4 10.3 10.6 ± 1.210.6 ± 1.2 f t0 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP[WMAP-7likelihood 1001.4538] code. -
Time-Dependent Cosmological Interpretation of Quantum Mechanics Emmanuel Moulay
Time-dependent cosmological interpretation of quantum mechanics Emmanuel Moulay To cite this version: Emmanuel Moulay. Time-dependent cosmological interpretation of quantum mechanics. 2016. hal- 01169099v2 HAL Id: hal-01169099 https://hal.archives-ouvertes.fr/hal-01169099v2 Preprint submitted on 18 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Time-dependent cosmological interpretation of quantum mechanics Emmanuel Moulay∗ Abstract The aim of this article is to define a time-dependent cosmological inter- pretation of quantum mechanics in the context of an infinite open FLRW universe. A time-dependent quantum state is defined for observers in sim- ilar observable universes by using the particle horizon. Then, we prove that the wave function collapse of this quantum state is avoided. 1 Introduction A new interpretation of quantum mechanics, called the cosmological interpre- tation of quantum mechanics, has been developed in order to take into account the new paradigm of eternal inflation [1, 2, 3]. Eternal inflation can lead to a collection of infinite open Friedmann-Lemaˆıtre-Robertson-Walker (FLRW) bub- ble universes belonging to a multiverse [4, 5, 6]. This inflationary scenario is called open inflation [7, 8]. -
Primordial Gravitational Waves and Cosmology Arxiv:1004.2504V1
Primordial Gravitational Waves and Cosmology Lawrence Krauss,1∗ Scott Dodelson,2;3;4 Stephan Meyer 3;4;5;6 1School of Earth and Space Exploration and Department of Physics, Arizona State University, PO Box 871404, Tempe, AZ 85287 2Center for Particle Astrophysics, Fermi National Laboratory PO Box 500, Batavia, IL 60510 3Department of Astronomy and Astrophysics 4Kavli Institute of Cosmological Physics 5Department of Physics 6Enrico Fermi Institute University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 ∗To whom correspondence should be addressed; E-mail: [email protected]. The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe, and on possible new physics at energies many orders of magnitude beyond those acces- sible at particle accelerators. Such waves might be detectable soon in current or planned satellite experiments that will probe for characteristic imprints in arXiv:1004.2504v1 [astro-ph.CO] 14 Apr 2010 the polarization of the cosmic microwave background (CMB), or later with di- rect space-based interferometers. A positive detection could provide definitive evidence for Inflation in the early universe, and would constrain new physics from the Grand Unification scale to the Planck scale. 1 Introduction Observations made over the past decade have led to a standard model of cosmology: a flat universe dominated by unknown forms of dark energy and dark matter. However, while all available cosmological data are consistent with this model, the origin of neither the dark energy nor the dark matter is known. The resolution of these mysteries may require us to probe back to the earliest moments of the big bang expansion, but before a period of about 380,000 years, the universe was both hot and opaque to electromagnetic radiation. -
Toward Quantifying the Climate Heat Engine: Solar Absorption and Terrestrial Emission Temperatures and Material Entropy Production
JUNE 2017 B A N N O N A N D L E E 1721 Toward Quantifying the Climate Heat Engine: Solar Absorption and Terrestrial Emission Temperatures and Material Entropy Production PETER R. BANNON AND SUKYOUNG LEE Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania (Manuscript received 15 August 2016, in final form 22 February 2017) ABSTRACT A heat-engine analysis of a climate system requires the determination of the solar absorption temperature and the terrestrial emission temperature. These temperatures are entropically defined as the ratio of the energy exchanged to the entropy produced. The emission temperature, shown here to be greater than or equal to the effective emission temperature, is relatively well known. In contrast, the absorption temperature re- quires radiative transfer calculations for its determination and is poorly known. The maximum material (i.e., nonradiative) entropy production of a planet’s steady-state climate system is a function of the absorption and emission temperatures. Because a climate system does no work, the material entropy production measures the system’s activity. The sensitivity of this production to changes in the emission and absorption temperatures is quantified. If Earth’s albedo does not change, material entropy production would increase by about 5% per 1-K increase in absorption temperature. If the absorption temperature does not change, entropy production would decrease by about 4% for a 1% decrease in albedo. It is shown that, as a planet’s emission temperature becomes more uniform, its entropy production tends to increase. Conversely, as a planet’s absorption temperature or albedo becomes more uniform, its entropy production tends to decrease. -
Galaxy Formation Within the Classical Big Bang Cosmology
Galaxy formation within the classical Big Bang Cosmology Bernd Vollmer CDS, Observatoire astronomique de Strasbourg Outline • some basics of astronomy small structure • galaxies, AGNs, and quasars • from galaxies to the large scale structure of the universe large • the theory of cosmology structure • measuring cosmological parameters • structure formation • galaxy formation in the cosmological framework • open questions small structure The architecture of the universe • Earth (~10-9 ly) • solar system (~6 10-4 ly) • nearby stars (> 5 ly) • Milky Way (~6 104 ly) • Galaxies (>2 106 ly) • large scale structure (> 50 106 ly) How can we investigate the universe Astronomical objects emit elctromagnetic waves which we can use to study them. BUT The earth’s atmosphere blocks a part of the electromagnetic spectrum. need for satellites Back body radiation • Opaque isolated body at a constant temperature Wien’s law: sun/star (5500 K): 0.5 µm visible human being (310 K): 9 µm infrared molecular cloud (15 K): 200 µm radio The structure of an atom Components: nucleus (protons, neutrons) + electrons Bohr’s model: the electrons orbit around the nucleus, the orbits are discrete Bohr’s model is too simplistic quantum mechanical description The emission of an astronomical object has 2 components: (i) continuum emission + (ii) line emission Stellar spectra Observing in colors Usage of filters (Johnson): U (UV), B (blue), V (visible), R (red), I (infrared) The Doppler effect • Is the apparent change in frequency and wavelength of a wave which is emitted by -
FRW Cosmology
17/11/2016 Cosmology 13.8 Gyrs of Big Bang History Gravity Ruler of the Universe 1 17/11/2016 Strong Nuclear Force Responsible for holding particles together inside the nucleus. The nuclear strong force carrier particle is called the gluon. The nuclear strong interaction has a range of 10‐15 m (diameter of a proton). Electromagnetic Force Responsible for electric and magnetic interactions, and determines structure of atoms and molecules. The electromagnetic force carrier particle is the photon (quantum of light) The electromagnetic interaction range is infinite. Weak Force Responsible for (beta) radioactivity. The weak force carrier particles are called weak gauge bosons (Z,W+,W‐). The nuclear weak interaction has a range of 10‐17 m (1% of proton diameter). Gravity Responsible for the attraction between masses. Although the gravitational force carrier The hypothetical (carrier) particle is the graviton. The gravitational interaction range is infinite. By far the weakest force of nature. 2 17/11/2016 The weakest force, by far, rules the Universe … Gravity has dominated its evolution, and determines its fate … Grand Unified Theories (GUT) Grand Unified Theories * describe how ∑ Strong ∑ Weak ∑ Electromagnetic Forces are manifestations of the same underlying GUT force … * This implies the strength of the forces to diverge from their uniform GUT strength * Interesting to see whether gravity at some very early instant unifies with these forces ??? 3 17/11/2016 Newton’s Static Universe ∑ In two thousand years of astronomy, no one ever guessed that the universe might be expanding. ∑ To ancient Greek astronomers and philosophers, the universe was seen as the embodiment of perfection, the heavens were truly heavenly: – unchanging, permanent, and geometrically perfect. -
“De Sitter Effect” in the Rise of Modern Relativistic Cosmology
The role played by the “de Sitter effect” in the rise of modern relativistic cosmology ● Matteo Realdi ● Department of Astronomy, Padova ● Sait 2009. Pisa, 7-5-2009 Table of contents ● Introduction ● 1917: Einstein, de Sitter and the universes of General Relativity ● 1920's: the debates on the “de Sitter effect”. The connection between theory and observation and the rise of scientific cosmology ● 1930: the expanding universe and the decline of the interest in the de Sitter effect ● Conclusion 1 - Introduction ● Modern cosmology: study of the origin, structure and evolution of the universe as a whole, based on the interpretation of astronomical observations at different wave- lengths through the laws of physics ● The early years: 1917-1930. Extremely relevant period, characterized by new ideas, discoveries, controversies, in the light of the first comparison of theoretical world-models with observations at the turning point of relativity revolution ● Particular attention on the interest in the so-called “de Sitter effect”, a theoretical redshift-distance relation which is predicted through the line element of the empty universe of de Sitter ● The de Sitter effect: fundamental influence in contributions that scientists as de Sitter, Eddington, Weyl, Lanczos, Lemaître, Robertson, Tolman, Silberstein, Wirtz, Lundmark, Stromberg, Hubble offered during the 1920's both in theoretical and in observational cosmology (emergence of the modern approach of cosmologists) ➔ Predictions and confirmations of an appropriate redshift- distance relation marked the tortuous process towards the change of viewpoint from the 1917 paradigm of a static universe to the 1930 picture of an expanding universe evolving both in space and in time 2 - 1917: the Universes of General Relativity ● General relativity: a suitable theory in order to describe the whole of space, time and gravitation? ● Two different metrics, i.e. -
Appendix a Rate of Entropy Production and Kinetic Implications
Appendix A Rate of Entropy Production and Kinetic Implications According to the second law of thermodynamics, the entropy of an isolated system can never decrease on a macroscopic scale; it must remain constant when equilib- rium is achieved or increase due to spontaneous processes within the system. The ramifications of entropy production constitute the subject of irreversible thermody- namics. A number of interesting kinetic relations, which are beyond the domain of classical thermodynamics, can be derived by considering the rate of entropy pro- duction in an isolated system. The rate and mechanism of evolution of a system is often of major or of even greater interest in many problems than its equilibrium state, especially in the study of natural processes. The purpose of this Appendix is to develop some of the kinetic relations relating to chemical reaction, diffusion and heat conduction from consideration of the entropy production due to spontaneous processes in an isolated system. A.1 Rate of Entropy Production: Conjugate Flux and Force in Irreversible Processes In order to formally treat an irreversible process within the framework of thermo- dynamics, it is important to identify the force that is conjugate to the observed flux. To this end, let us start with the question: what is the force that drives heat flux by conduction (or heat diffusion) along a temperature gradient? The intuitive answer is: temperature gradient. But the answer is not entirely correct. To find out the exact force that drives diffusive heat flux, let us consider an isolated composite system that is divided into two subsystems, I and II, by a rigid diathermal wall, the subsystems being maintained at different but uniform temperatures of TI and TII, respectively. -
Thermodynamics of Manufacturing Processes—The Workpiece and the Machinery
inventions Article Thermodynamics of Manufacturing Processes—The Workpiece and the Machinery Jude A. Osara Mechanical Engineering Department, University of Texas at Austin, EnHeGi Research and Engineering, Austin, TX 78712, USA; [email protected] Received: 27 March 2019; Accepted: 10 May 2019; Published: 15 May 2019 Abstract: Considered the world’s largest industry, manufacturing transforms billions of raw materials into useful products. Like all real processes and systems, manufacturing processes and equipment are subject to the first and second laws of thermodynamics and can be modeled via thermodynamic formulations. This article presents a simple thermodynamic model of a manufacturing sub-process or task, assuming multiple tasks make up the entire process. For example, to manufacture a machined component such as an aluminum gear, tasks include cutting the original shaft into gear blanks of desired dimensions, machining the gear teeth, surfacing, etc. The formulations presented here, assessing the workpiece and the machinery via entropy generation, apply to hand-crafting. However, consistent isolation and measurement of human energy changes due to food intake and work output alone pose a significant challenge; hence, this discussion focuses on standardized product-forming processes typically via machine fabrication. Keywords: thermodynamics; manufacturing; product formation; entropy; Helmholtz energy; irreversibility 1. Introduction Industrial processes—manufacturing or servicing—involve one or more forms of electrical, mechanical, chemical (including nuclear), and thermal energy conversion processes. For a manufactured component, an interpretation of the first law of thermodynamics indicates that the internal energy content of the component is the energy that formed the product [1]. Cursorily, this sums all the work that goes into the manufacturing process from electrical to mechanical, chemical, and thermal power consumption by the manufacturing equipment. -
AST4220: Cosmology I
AST4220: Cosmology I Øystein Elgarøy 2 Contents 1 Cosmological models 1 1.1 Special relativity: space and time as a unity . 1 1.2 Curvedspacetime......................... 3 1.3 Curved spaces: the surface of a sphere . 4 1.4 The Robertson-Walker line element . 6 1.5 Redshifts and cosmological distances . 9 1.5.1 Thecosmicredshift . 9 1.5.2 Properdistance. 11 1.5.3 The luminosity distance . 13 1.5.4 The angular diameter distance . 14 1.5.5 The comoving coordinate r ............... 15 1.6 TheFriedmannequations . 15 1.6.1 Timetomemorize! . 20 1.7 Equationsofstate ........................ 21 1.7.1 Dust: non-relativistic matter . 21 1.7.2 Radiation: relativistic matter . 22 1.8 The evolution of the energy density . 22 1.9 The cosmological constant . 24 1.10 Some classic cosmological models . 26 1.10.1 Spatially flat, dust- or radiation-only models . 27 1.10.2 Spatially flat, empty universe with a cosmological con- stant............................ 29 1.10.3 Open and closed dust models with no cosmological constant.......................... 31 1.10.4 Models with more than one component . 34 1.10.5 Models with matter and radiation . 35 1.10.6 TheflatΛCDMmodel. 37 1.10.7 Models with matter, curvature and a cosmological con- stant............................ 40 1.11Horizons.............................. 42 1.11.1 Theeventhorizon . 44 1.11.2 Theparticlehorizon . 45 1.11.3 Examples ......................... 46 I II CONTENTS 1.12 The Steady State model . 48 1.13 Some observable quantities and how to calculate them . 50 1.14 Closingcomments . 52 1.15Exercises ............................. 53 2 The early, hot universe 61 2.1 Radiation temperature in the early universe .