Efficacy Assessment of Antifungal Metabolites from Chaetomium

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy Assessment of Antifungal Metabolites from Chaetomium Biological Control 64 (2013) 90–98 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Efficacy assessment of antifungal metabolites from Chaetomium globosum No.05, a new biocontrol agent, against Setosphaeria turcica Guizhen Zhang a,1, Fengting Wang a,1, Jianchun Qin a, Di Wang a, Jingying Zhang b, Yanhua Zhang a, ⇑ Shihong Zhang a, Hongyu Pan a, a College of Plant Sciences, Jilin University, Changchun, Jilin 130062, China b College of Environmental and Resource Sciences, Jilin University, Changchun, Jilin 130026, China highlights graphical abstract " One of the very few reports on biological control of northern corn leaf blight (NCLB). " Strain No.05 strongly reduce disease on detached maize leaves and on seedlings. " Two antifungal substances are obtained from strain No.05 by bioassay-guided isolation. " Chaetoglobosin A displays potent suppression of Setosphaeria turcica both in vitro and in planta. article info abstract Article history: Northern corn leaf blight (NCLB), an important and potentially destructive corn foliar disease, is caused Received 19 June 2012 by Setosphaeria turcica. The intent of this study was to evaluate antifungal metabolites from Chaetomium Accepted 16 October 2012 globosum (Cg) strain No.05 to suppress NCLB in maize. This strain significantly suppressed mycelial Available online 29 October 2012 growth of numerous phytopathogenic fungi especially S. turcica on potato dextrose agar medium. The secondary metabolites of the strain inhibited mycelial growth and conidial germination of S. turcica. Keywords: When co-inoculated at three droplets (5 lL/droplet) of conidial suspension (5  104 conidia/mL) on each Setosphaeria turcica 8-cm-long detached leaf, 20% culture filtrates completely suppressed disease incidence of northern corn Biological control leaf blight. The application of the culture filtrates at 2 h post-inoculation (hpi) of S. turcica in greenhouse Chaetomium globosum Culture filtrate studies showed a 81.9% inhibition of NCLB on the seedlings, while culture filtrates applied before path- Secondary metabolites ogen inoculation showed even higher rates of disease reduction. The application of the culture filtrates Chaetoglobosin had no observed effects on the treated maize leaves or seedlings. Two active compounds, isolated from the extracts, were identified as chaetoglobosin A and chaetoglobosin C based on the spectroscopic anal- ysis. Both in vitro and in planta bioassay experiments showed that chaetoglobosin A displayed potent bio- control efficiency against S. turcica. To the best of our knowledge, this is the first report of the evaluation of the inhibitory effects of C. globosum and chaetoglobosin A against S. turcica both in vitro and on detached maize leaves. Ó 2012 Elsevier Inc. All rights reserved. 1. Introduction ⇑ Corresponding author. Fax: +86 431 86758762. Northern corn leaf blight (NCLB), caused by the heterothallic E-mail addresses: [email protected] (G. Zhang), [email protected] (F. Wang), ascomycete, Setosphaeria turcica (Luttrell) Leonard and Suggs [ana- [email protected] (J. Qin), [email protected] (D. Wang), morph: Exserohilum turcicum (Pass.) Leonard and Suggs], is a major [email protected] (J. Zhang), [email protected] (Y. Zhang), foliar disease of maize (Zea mays L.) and is prevalent in most maize [email protected] (S. Zhang), [email protected] (H. Pan). 1 These authors contributed equally to this work and are considered co-first production regions worldwide (Perkins and Pedersen, 1987; authors. Raymundo and Hooker, 1981; Zhang et al., 2012a). The disease 1049-9644/$ - see front matter Ó 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.biocontrol.2012.10.005 G. Zhang et al. / Biological Control 64 (2013) 90–98 91 can cause extensive defoliation during the grain-filling period, cell-free supernatant from the pellet. The cell-free supernatant was resulting in up to 50% or more grain yield loss (Perkins and Peder- passed through a 100-lm pore size filter to further exclude myce- sen, 1987; Raymundo and Hooker, 1981; Zhang et al., 2012a,b). lia and to obtain a filtrate which was used to test antifungal activ- Control of the disease depends mainly on the application of resis- ity and the efficiency of disease suppression in the following tant cultivars together with chemical fungicides. However, breed- bioassays (see below). ing of resistant varieties is time-consuming and does not keep up For disease suppression tests, conidia of S. turcica were har- with the development of new physiological races of the pathogen. vested in 20 mL sterilized 0.01% Tween-20 solution (v/v) by gently Meanwhile, the detrimental effects caused by the use of hazardous scraping fungal mycelia and spores from 7-d-old culture on oat- chemicals for disease control in crops have received increasing meal-tomato agar plates. The conidial suspensions were filtered attention worldwide, due to the facts that more pathogens have through three layers of cheesecloth to remove mycelial fragments become resistant to the used chemical fungicides and the resulted and agar, and adjusted the conidial concentrations of approxi- environmental pollution and ecological imbalances (Seebold et al., mately 5  104 conidia/mL for the following bioassays (see below). 2004; Soytong et al., 2005; Chouvenc et al., 2011; Zhang et al., For the fungal growth inhibition tests, ten phytopathogenic fungi 2012a). Thus, there is a great demand for new methods to supple- from our collections (Table 1) were grown on PDA at 26 ± 0.5 °C ment the existing disease management strategies to achieve better for 3-7 d, then the mycelial plugs were taken from the PDA plates NCLB control. and used in the assay as described below. Applications of biological control agents (BCAs) and their sec- ondary metabolites are important strategies in agricultural control 2.2. Plant materials against plant diseases. With the increased interest in biological control, many BCAs such as Bacillus amyloliquefaciens (Fukumoto) Five common maize (Z. mays L.) cultivars, CI6502 (Pioneer), Priest, Bacillus vallismortis Roberts, Pseudomonas fluorescens M753 (Monsanto), XY335 (Pioneer), XY696 (Pioneer), and ZD958 (Flügge) Migula, Streptomyces globisporus (Krasilnikov) Waksman, (Henan academy of agricultural sciences, China) moderate or Chaetomium globosum Kunze, and Trichoderma harzianum Rifai highly susceptible to NCLB, were used in this study. All in vivo have been demonstrated to play important roles on biological studies were done with the moderate susceptible maize cultivar plant disease control in agriculture due to their potential biological Pioneer XY335, except in Section 2.7. All five maize cultivars seeds activity (Chen et al., 2009; Zhao et al., 2010; Krishnamurthy and were individually sterilized in 0.5% sodium hypochlorite solution Gnanamanickam, 1998; Prabavathy et al., 2006; Bressan, 2003; for 1 min, and rinsed with sterile distilled water. The sterilized Salman and Abuamsha, 2012; Li et al., 2011a,b; Vitale et al., seeds were placed on moistened absorbent paper in enclosed plas- 2011; Soytong et al., 2005). However, effective control of S. turcica tic dishes in an incubator at 26 ± 0.5 °C for 3 d. The germinating with BCAs has remained elusive. seeds were transplanted into 15 cm  16 cm (height  diameter) Safer and more environmentally friendly methods, including plastic pots containing approximately 6 kg autoclaved local soil the use of natural substances would be favorably considered for [sand:loam = 1:5 (v/v)] and each pot contained five seeds. The pot- disease management by the public, politicians, and the scientific ted seeds were grown in a greenhouse at 25–30 °C with a 14 h- communities, particularly in those habitats where the use of chem- light/10 h-dark cycle. Leaves were sprayed with tap water twice icals is restricted or banned. To date, more than 200 compounds a day till runoff, and irrigated as needed. The seedlings were fertil- have been identified from Chaetomium spp. and some of the com- ized with 1 g ammonium sulfate per pot at 10 d post-transplant. pounds have been reported to possess significant biological activi- All seedlings were used for bioassay at the 4-leaf stage. ties, such as cytotoxic, enzyme inhibition, and antibiotic (Gunatilaka, 2006; Scherlach et al., 2010; Li et al., 2011b; Qin 2.3. Antagonism of strain No.05 to phytopathogenic fungi et al., 2009a,b; Yang et al., 2011a,b). However, the biological effects of secondary metabolites derived from Chaetomium spp. still re- The dual culture method (Li et al., 2011) was used to evaluate mained untested on NCLB control. the potential antagonisms of strain No.05 against several phyto- In this study, the control effect of NCLB by secondary metabo- pathogenic fungi. Each one of the phytopathogenic fungi and C. lites from C. globosum strain No.05 was investigated. The objectives globosum were co-cultured separately on a 9-cm Petri dish with of this study were: (1) to assess the antifungal activity of the cul- PDA medium at 26 ± 0.5 °C for 5–7 days. The distance between ture filtrates of strain No.05 on the mycelial growth of a variety the two inoculation sites (strain No.05 and other tested fungal of fungi, (2) to investigate the inhibitory efficiency of the secondary plug) on each plate was about 45 mm. In the inoculated control metabolites from strain No.05 against NCLB, (3) to identify the bio- plates, a 12-mm-diameter mycelial plug of a phytopathogenic logical active compounds from C. globosum, and (4) to assess the fungus was inoculated at the side of a PDA plate with sterile antifungal efficacy of the identified compounds against S. turcica 12-mm-diameter PDA plug placed at the edge. When mycelial both in vitro and on detached maize leaves. growth of a fungal isolate had reached the edge of an inoculated control plate, the non-colonized zone of the treatment plates be- tween the two inoculation sites of strain No.05 and fungal plug 2.
Recommended publications
  • Soil Fungi As a Biotic Factor Affecting on the Plants
    SOIL FUNGI AS A BIOTIC FACTOR AFFECTING ON THE PLANTS propahul [Methodological approaches of plant sort of cucumber sorts and hybrids in agrophytocenoses]. evaluation using of resistance to plant fungal patho- Extended abstract of Candidate′s thesis. Kyiv [in gens]. Ahroekolohichnyi zhurnal — Ahroecological Ukrainian]. journal, 3, 90–93 [in Ukrainian]. 21. Beznosko, I.V. (2013). Rol’ askorbinovoyi kysloty i 16. Parfenyuk, A.Í. (2009). Sorti síl’s’kogospodars’kikh tsukriv u vzayemodiyi sortiv pertsyu solodkoho ta kul’tur, yak faktor bíokontrolyu fítopatogennikh mikromitsetu Alternaria solani (Ell. et Mart.) [The míkroorganízmív v agrofítotsenozakh [Sorts of crops role of ascorbic acid and sugar in interaction of sweet as factor of biocontrol of pathogenic microorga - pepper sorts and micromycete Alternaria solani (Ell. nisms in agrophytocenoses]. Ahroekolohichnyi zhur- et Mart.)]. Ahroekolohichnyi zhurnal — Ahroecologi- nal — Ahroecological journal, Special Issue, 248–250 cal journal, 4, 130–132 [in Ukrainian]. [in Ukrainian]. 22. Blahinina, A.A. Ekolohichni osoblyvosti vzayemo - 17. Parfenyuk, A.Í., Kulinich, V.M., Krut’, V.Í. (2009). diyi henotypiv pshenytsi ta patotypiv fitopato- Sorti buryaka stolovogo, yak faktor bíokontrolyu henykh hrybiv [Ecological features of wheat geno- fítopatogennikh míkroorganízmív [Sorts of red beet type interaction with pathogenic types of fungi]. as a factor of biocontrol of pathogenic microorgan- Extended abstract of Candidate′s thesis. Kyiv [in isms] Ahroekolohichnyi zhurnal — Ahroecological Ukrainian]. journal, Special Issue, 251–253 [in Ukrainian]. 23. Blahinina, A.A., Parfenyuk, A.I. (2013). Vplyv me- 18. Parfenyuk, A.Í., Chmíl’, O.M., Pasinok, Í.V. (2009). tabolitiv roslyn riznykh sortiv pshenytsi ozymoyi na Chisel’níst’ fítopatogennikh gribív na líníyakh ta intensyvnist’ propahuloutvorennya hrybiv Fusarium gíbridakh ogírka [Number of plant pathogenic fungi oxysporum Schlecgt.
    [Show full text]
  • A Review on Chaetomium Globosum Is Versatile Weapons for Various Plant
    Journal of Pharmacognosy and Phytochemistry 2019; 8(2): 946-949 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(2): 946-949 A review on Chaetomium globosum is versatile Received: 03-01-2018 Accepted: 06-02-2018 weapons for various plant pathogens C Ashwini Horticulture Polytechnic College, C Ashwini Sri Konda Laxman Telangana State Horticultural University, Abstract Telangana, India Chaetomium globosum is a potential bio control agent against various seed and soil borne pathogens. Plant pathogens are the main threat for profitable agricultural productivity. Currently, Chemical fungicides are highly effective and convenient to use but they are a potential threat for the environment. Therefore the use of biocontrol agents for the management of plant pathogens is considered as a safer and sustainable strategy for safe and profitable agricultural productivity. Many experiments and studies revealed by various researchers C. globosum used as plant growth promoter and resulted into high yield of crops in field conditions. C. globosum produces pectinolytic enzymes polygalacturonate trans- eliminase (PGTE), pectin trans-eliminase (PTE), viz., polygalacturonase (PG), pectin methyl esterase (PME), protopectinase (PP), xylanase and cellulolytic (C and C ) 1 xenzymes and various biologically active substances, such as chaetoglobosin A, Chaetomium B, C, D, Q, R, T, chaetomin, chaetocin, chaetochalasin A, chaetoviridins A and C. The present aim of this article we have discussed the various aspects of biocontrol potential of Chaetomium globosum. Keywords: Biological control, Chaetomium globosum, plant pathogens Introduction Chaetomium globosum is so far commonest and most cosmopolitan fungi especially on plant remains, seeds, compost paper and other cellulosic substrates. (Domsch et al.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Potential of Microbial Diversity of Coastal Sand Dunes: Need for Exploration in Odisha Coast of India
    Hindawi e Scientific World Journal Volume 2019, Article ID 2758501, 9 pages https://doi.org/10.1155/2019/2758501 Review Article Potential of Microbial Diversity of Coastal Sand Dunes: Need for Exploration in Odisha Coast of India Shubhransu Nayak , Satyaranjan Behera, and Prasad Kumar Dash Odisha Biodiversity Board, Regional Plant Resource Centre Campus, Ekamra Kanan, Nayapalli, Bhubaneswar , Odisha, India Correspondence should be addressed to Shubhransu Nayak; [email protected] Received 10 April 2019; Accepted 2 July 2019; Published 14 July 2019 Academic Editor: Jesus L. Romalde Copyright © 2019 Shubhransu Nayak et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Coastal sand dunes are hips and strips formed by sand particles which are eroded and ground rock, derived from terrestrial and oceanic sources. Tis is considered as a specialized ecosystem characterized by conditions which are hostile for life forms like high salt, low moisture, and low organic matter content. However, dunes are also inhabited by diverse groups of fora, fauna, and microorganisms specifcally adapted to these situations. Microbial groups like fungi, bacteria, and actinobacteria are quite abundant in the rhizosphere, phyllosphere, and inside plants which are very much essential for the integration of dunes. Microorganisms in this ecosystem have been found to produce a number of bioactive metabolites which are of great importance to agriculture and industries. Many species of arbuscular mycorrhizal fungi and Rhizobia associated with the roots of dune fora are prolifc producers of plant growth promoting biochemicals like indole acetic acid.
    [Show full text]
  • On a New Species of Chaetomidium, C. Vicugnae, with a Cephalothecoid
    On a new species of Chaetomidium, C. vicugnae, with a cepha- lothecoid peridium and its relationships with Chaetomiaceae (Sordariales) Francesco DOVERI Abstract: a sample of vicuña dung from a Chilean coastal desert was submitted to the attention of the au- thor, who at first sight noticed the presence of different pyrenomycetes. several hairy cleistothecia particu- larly caught his attention and were subjected to a morphological study that proved them to belong to a new species of Chaetomidium. after mentioning the main features of Sordariales and Chaetomiaceae, the author describes in detail the macro-and microscopic characters of the new species Chaetomidium vicugnae Ascomycete.org, 10 (2) : 86–96 and compares it with all the other Chaetomidium spp. with a cephalothecoid peridium. The extensive dis- Mise en ligne le 22/04/2018 cussion focuses on the characterization and relationships of the genus Chaetomidium and Chaetomidium 10.25664/ART-0231 vicugnae within the complex family Chaetomiaceae. all collections of the related species are recorded and dung is regarded as the preferential substrate. Keys are provided to sexual morph genera of Chaetomiaceae and to Chaetomidium species with a cephalothecoid peridium. Keywords: ascomycota, coprophily, germination, homoplasy, morphology, peridial frame, systematics. Introduction zing the importance of a future systematic study of vicuña dung for a better knowledge of the generic relationships in this family. My studies on coprophilous ascomycetes (Doveri, 2004, 2011) al- lowed me to meet with several representatives of Sordariales Cha- Materials and methods def. ex D. Hawksw. & o.e. erikss., an order identifiable with the so called “pyrenomycetes” s.str., i.e.
    [Show full text]
  • 1 Research Article 1 2 Fungi 3 Authors: 4 5 6 7 8 9 10
    1 Research Article 2 The architecture of metabolism maximizes biosynthetic diversity in the largest class of 3 fungi 4 Authors: 5 Emile Gluck-Thaler, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 6 Sajeet Haridas, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 7 Laboratory, Berkeley, CA, USA 8 Manfred Binder, TechBase, R-Tech GmbH, Regensburg, Germany 9 Igor V. Grigoriev, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 10 Laboratory, Berkeley, CA, USA, and Department of Plant and Microbial Biology, University of 11 California, Berkeley, CA 12 Pedro W. Crous, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The 13 Netherlands 14 Joseph W. Spatafora, Department of Botany and Plant Pathology, Oregon State University, OR, USA 15 Kathryn Bushley, Department of Plant and Microbial Biology, University of Minnesota, MN, USA 16 Jason C. Slot, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 17 corresponding author: [email protected] 18 1 19 Abstract: 20 Background - Ecological diversity in fungi is largely defined by metabolic traits, including the 21 ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with 22 other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters 23 (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation 24 in BGC composition reflects the diversity of their SM products. Recent studies have documented 25 surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is 26 known about how this population-level variation is inherited across macroevolutionary 27 timescales.
    [Show full text]
  • Diversity of Expression Types of Ht Genes Conferring Resistance in Maize to Exserohilum Turcicum
    fpls-11-607850 December 13, 2020 Time: 10:58 # 1 ORIGINAL RESEARCH published: 17 December 2020 doi: 10.3389/fpls.2020.607850 Diversity of Expression Types of Ht Genes Conferring Resistance in Maize to Exserohilum turcicum Barbara Ludwig Navarro1*, Hendrik Hanekamp2, Birger Koopmann1 and Andreas von Tiedemann1 1 Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-Universität Göttingen, Göttingen, Germany, 2 Plant Protection Office, Chamber of Agriculture Lower Saxony, Hannover, Germany Northern corn leaf blight (NCLB) is an important leaf disease in maize (Zea mays) worldwide and is spreading into new areas with expanding maize cultivation, like Germany. Exserohilum turcicum, causal agent of NCLB, infects and colonizes leaf tissue and induces elongated necrotic lesions. Disease control is based on fungicide application and resistant cultivars displaying monogenic resistance. Symptom expression and resistance mechanisms differ in plants carrying different resistance genes. Therefore, histological studies and DNA quantification were performed to Edited by: Dilantha Fernando, compare the pathogenesis of E. turcicum races in maize lines exhibiting compatible or University of Manitoba, Canada incompatible interactions. Maize plants from the differential line B37 with and without Reviewed by: resistance genes Ht1, Ht2, Ht3, and Htn1 were inoculated with either incompatible Carl Alan Bradley, or compatible races (race 0, race 1 and race 23N) of E. turcicum. Leaf segments University of Kentucky, United States Sang-Wook Han, from healthy and inoculated plants were collected at five different stages of infection Chung-Ang University, South Korea and disease development from penetration (0–1 days post inoculation - dpi), until *Correspondence: full symptom expression (14–18 dpi).
    [Show full text]
  • Production of Vineomycin A1 and Chaetoglobosin a by Streptomyces Sp
    Production of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114 Adel Aouiche, Atika Meklat, Christian Bijani, Abdelghani Zitouni, Nasserdine Sabaou, Florence Mathieu To cite this version: Adel Aouiche, Atika Meklat, Christian Bijani, Abdelghani Zitouni, Nasserdine Sabaou, et al.. Produc- tion of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114. Annals of Microbiology, Springer, 2015, 65 (3), pp.1351-1359. 10.1007/s13213-014-0973-1. hal-01923617 HAL Id: hal-01923617 https://hal.archives-ouvertes.fr/hal-01923617 Submitted on 15 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/20338 Official URL: https://doi.org/10.1007/s13213-014-0973-1 To cite this version: Aouiche, Adel and Meklat, Atika and Bijani, Christian and Zitouni, Abdelghani and Sabaou, Nasserdine and Mathieu, Florence Production of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114. (2015) Annals of Microbiology, 65 (3). 1351-1359.
    [Show full text]
  • Received: 09 Th Nov-2013 Revised: 24 Th Nov-2013 Accepted: 25 Th
    Received: 09th Nov-2013 Revised: 24th Nov-2013 Accepted: 25th Nov-2013 Review article TURCICUM LEAF BLIGHT OF MAIZE INCITED BY Exserohilum turcicum: A REVIEW T. Rajeshwar Reddy1, P. Narayan Reddy1, R. Ranga Reddy2 Department of Plant Pathology, College of Agriculture, Acharya N G Ranga Agricultural University, Rajendranagar, Hyderabad - 500 030, Andhra Pradesh, India. 2Principal Scientist & Head, Maize Research Station, ARI, Rajendranagar, Hyderabad - 500 030, Andhra Pradesh, India. INTRODUCTION Globally maize (Zea mays L.) is the first and most important cereal crop gown under diversity of environments unmatched by any other crop, as expansion of maize to new areas and environment still continues due to its range of plasticity. It is prone to as many as 112 diseases in different parts of the world, caused by fungi, bacteria, viruses and nematodes leading to extensive damage. In India about 61 diseases have been reported to affect the crop. These include seedling blights, stalk rots, foliar diseases, downy mildews and ear rots (Payaket al., 1973 and Payak and Sharma, 1985).Among the fungal diseases turcicum leaf blight caused by Exserohilum turcicum (Pass.). Leonard and Suggs. (Synonyms:Helminthosprium turcicum (Pass.) Leonard and Suggs) [Perfect stage: Setosphaeria turcica (Luttrell) Leonard and Suggs. (Synonym: Trichometasphaeria turcica (Luttrell)] is one the important foliar disease causing severe reduction in grain and fodder yield to the tune of 16 -98% (Kachapur and Hegde, 1988). The disease was first described by Passerini (1876) from Italy and by Butler (1907) from India. In India, this disease is prevalent in Andhra Pradesh, Karnataka, Bihar, Himachal Pradesh and Maharashtra. Turcicum leaf blight is potentially an important foliar disease in areas where the temperatures drop at night while the humidity is high.
    [Show full text]
  • Phylogenetic Reassessment of the Chaetomium Globosum Species Complex
    Persoonia 36, 2016: 83–133 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X689657 Phylogenetic reassessment of the Chaetomium globosum species complex X.W. Wang1, L. Lombard2, J.Z. Groenewald2, J. Li1, S.I.R. Videira2, R.A. Samson2, X.Z. Liu1*, P.W. Crous 2,3,4* Key words Abstract Chaetomium globosum, the type species of the genus, is ubiquitous, occurring on a wide variety of sub- strates, in air and in marine environments. This species is recognised as a cellulolytic and/or endophytic fungus. It DNA barcode is also known as a source of secondary metabolites with various biological activities, having great potential in the epitypification agricultural, medicinal and industrial fields. On the negative side, C. globosum has been reported as an air con- multi-gene phylogeny taminant causing adverse health effects and as causal agent of human fungal infections. However, the taxonomic species complex status of C. globosum is still poorly understood. The contemporary species concept for this fungus includes a systematics broadly defined morphological diversity as well as a large number of synonymies with limited phylogenetic evidence. The aim of this study is, therefore, to resolve the phylogenetic limits of C. globosum s.str. and related species. Screening of isolates in the collections of the CBS-KNAW Fungal Biodiversity Centre (The Netherlands) and the China General Microbiological Culture Collection Centre (China) resulted in recognising 80 representative isolates of the C. globosum species complex. Thirty-six species are identified based on phylogenetic inference of six loci, supported by typical morphological characters, mainly ascospore shape.
    [Show full text]
  • Chaetomium Endophytes: a Repository of Pharmacologically Active Metabolites
    Acta Physiol Plant (2016) 38:136 DOI 10.1007/s11738-016-2138-2 REVIEW Chaetomium endophytes: a repository of pharmacologically active metabolites 1 2 3 4 Nighat Fatima • Syed Aun Muhammad • Ibrar Khan • Muneer Ahmed Qazi • 5 6 6 6 Irum Shahzadi • Amara Mumtaz • Muhammad Ali Hashmi • Abida Kalsoom Khan • Tariq Ismail1 Received: 12 April 2015 / Revised: 8 April 2016 / Accepted: 12 April 2016 Ó Franciszek Go´rski Institute of Plant Physiology, Polish Academy of Sciences, Krako´w 2016 Abstract Fungal endophytes are group of fungi that grow Introduction within the plant tissues without causing immediate signs of disease and are abundant and diverse producers of bioac- Endophytes are the microorganisms, usually becoming a tive secondary metabolites. The Chaetomium genus of part of plant’s life by colonizing in its internal tissues kingdom fungi is considered to be a rich source of unique without causing any disease to it (Bacon and White 2000). bioactive metabolites. These metabolites belong to chem- Endophytes enhance the resistance of their host against ically diverse classes, i.e., chaetoglobosins, xanthones, pathogenic attack by producing bioactive secondary anthraquinones, chromones, depsidones, terpenoids and metabolites so that they can survive in adverse conditions steroids. Cheatomium through production of diverse (Azevedo et al. 2000; Strobel 2003). The endophytic fungi metabolites can be considered as a potential source of play important physiological and ecological (Tintjer and antitumor, cytotoxic, antimalarial, antibiotic and enzyme Rudger 2006) roles in their host’s life. The existence of inhibitory lead molecules for drug discovery. This review these endophytic microorganisms is well established, but covers isolation of Cheatomium endophytes, extraction and their geographical distribution and diversity are unknown isolation of metabolites and their biological activities.
    [Show full text]
  • The Family Pleosporaceae: Intergeneric Relationships and Phylogenetic Perspectives Based on Sequence Analyses of Partial 28S Rdna
    Mycologia, 98(4), 2006, pp. 571–583. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA Rampai Kodsueb niothelia, which is probably polyphyletic. Anamorphic Department of Biology, Faculty of Science, Chiang Mai characters appear to be significant (especially in University, Chiang Mai, Thailand Cochliobolus) while ascospore morphologies, such as Vijaykrishna Dhanasekaran shape and color and substrate occurrence are poor Centre for Research in Fungal Diversity, Department of indicators of phylogenetic relationships among these Ecology & Biodiversity, The University of Hong Kong, loculoascomycetes. Pokfulam Road, Hong Kong Key words: anamorphs, ascospore morphology, Andre´ Aptroot Loculoascomycetes, phylogeny, Pleospora, polyphy- Centraalbureau voor Schimmelcultures, P.O. Box letic, ribosomal DNA 85167, 3508 AD Utrecht, The Netherlands Saisamorn Lumyong INTRODUCTION Department of Biology, Faculty of Science, Chiang Mai The largest family within the Pleosporales, Pleospor- University, Chiang Mai, Thailand aceae, comprises 17 genera and 111 species (Kirk et al Eric H.C. McKenzie 2001). Species are parasites or saprobes on wood and Landcare Research, Private Bag 92170, Auckland, dead herbaceous stems or leaves (Sivanesan 1984). New Zealand The classification in the Pleosporaceae has been Kevin D. Hyde based primarily on the Pleospora type of centrum Rajesh Jeewon1 development (Dong et al 1998) and asci that are Centre for Research in Fungal Diversity, Department of interspersed with pseudoparaphyses in the asco- Ecology & Biodiversity, The University of Hong Kong, stroma. These pseudoparaphyses originate above the Pokfulam Road, Hong Kong hymenial layer and grow downward among the asci to fuse at the base of the locule (Wehmeyer 1975).
    [Show full text]