A Review on Chaetomium Globosum Is Versatile Weapons for Various Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ascomyceteorg 08-05 Ascomyceteorg
Chaetomium convolutum and C. hexagonosporum from Italy with a morphological revision of the group-bostrychodes Francesco DOVERI Abstract: Chaetomium convolutum, newly isolated from herbivore dung in a survey of coprophilous asco- mycetes and basidiomycetes, is first described from Italy and compared with other species of the so called “group-bostrychodes”. The taxonomic uncertainty, still present in this group despite a recent comparative, morphological and molecular study, led the author to revise all Italian collections of species related to C. convolutum, and to prove that also the very rare C. hexagonosporum is present in Italy. The morphological Ascomycete.org, 8 (5) : 185-198. features of C. hexagonosporum are described in detail and particularly compared with those of C. convolutum. Novembre 2016 The results of this review confirm the existence of several intermediates in the group-bostrychodes, for which Mise en ligne le 3/11/2016 a much more extended revision is hoped. Keywords: cellulose, Chaetomiun bostrychodes, Chaetomium robustum, coprophilous fungi, morphological study. Riassunto: Chaetomium convolutum, isolato recentemente da escrementi di erbivori in un’ indagine sugli ascomiceti e basidiomiceti coprofili, è descritto per la prima volta in Italia e messo a confronto con altre specie del cosiddetto "gruppo-bostrychodes". L'incertezza tassonomica, ancora presente in questo gruppo nonostante un recente studio comparativo, morfologico e molecolare, ha indotto l'autore a rivedere tutte le raccolte italiane correlate a C. convolutum, e a dimostrare che anche il molto raro C. hexagonosporum è presente in Italia. Le caratteristiche morfologiche di C. hexagonosporum sono dettagliatamente descritte e in modo particolare confrontate con quelle di C. convolutum. -
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi. -
Soil Fungi As a Biotic Factor Affecting on the Plants
SOIL FUNGI AS A BIOTIC FACTOR AFFECTING ON THE PLANTS propahul [Methodological approaches of plant sort of cucumber sorts and hybrids in agrophytocenoses]. evaluation using of resistance to plant fungal patho- Extended abstract of Candidate′s thesis. Kyiv [in gens]. Ahroekolohichnyi zhurnal — Ahroecological Ukrainian]. journal, 3, 90–93 [in Ukrainian]. 21. Beznosko, I.V. (2013). Rol’ askorbinovoyi kysloty i 16. Parfenyuk, A.Í. (2009). Sorti síl’s’kogospodars’kikh tsukriv u vzayemodiyi sortiv pertsyu solodkoho ta kul’tur, yak faktor bíokontrolyu fítopatogennikh mikromitsetu Alternaria solani (Ell. et Mart.) [The míkroorganízmív v agrofítotsenozakh [Sorts of crops role of ascorbic acid and sugar in interaction of sweet as factor of biocontrol of pathogenic microorga - pepper sorts and micromycete Alternaria solani (Ell. nisms in agrophytocenoses]. Ahroekolohichnyi zhur- et Mart.)]. Ahroekolohichnyi zhurnal — Ahroecologi- nal — Ahroecological journal, Special Issue, 248–250 cal journal, 4, 130–132 [in Ukrainian]. [in Ukrainian]. 22. Blahinina, A.A. Ekolohichni osoblyvosti vzayemo - 17. Parfenyuk, A.Í., Kulinich, V.M., Krut’, V.Í. (2009). diyi henotypiv pshenytsi ta patotypiv fitopato- Sorti buryaka stolovogo, yak faktor bíokontrolyu henykh hrybiv [Ecological features of wheat geno- fítopatogennikh míkroorganízmív [Sorts of red beet type interaction with pathogenic types of fungi]. as a factor of biocontrol of pathogenic microorgan- Extended abstract of Candidate′s thesis. Kyiv [in isms] Ahroekolohichnyi zhurnal — Ahroecological Ukrainian]. journal, Special Issue, 251–253 [in Ukrainian]. 23. Blahinina, A.A., Parfenyuk, A.I. (2013). Vplyv me- 18. Parfenyuk, A.Í., Chmíl’, O.M., Pasinok, Í.V. (2009). tabolitiv roslyn riznykh sortiv pshenytsi ozymoyi na Chisel’níst’ fítopatogennikh gribív na líníyakh ta intensyvnist’ propahuloutvorennya hrybiv Fusarium gíbridakh ogírka [Number of plant pathogenic fungi oxysporum Schlecgt. -
Phylogenetic Investigations of Sordariaceae Based on Multiple Gene Sequences and Morphology
mycological research 110 (2006) 137– 150 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology Lei CAI*, Rajesh JEEWON, Kevin D. HYDE Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China article info abstract Article history: The family Sordariaceae incorporates a number of fungi that are excellent model organisms Received 10 May 2005 for various biological, biochemical, ecological, genetic and evolutionary studies. To deter- Received in revised form mine the evolutionary relationships within this group and their respective phylogenetic 19 August 2005 placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribo- Accepted 29 September 2005 somal DNA and partial nuclear b-tubulin) were analysed using maximum parsimony and Corresponding Editor: H. Thorsten Bayesian analyses. Analyses of different gene datasets were performed individually and Lumbsch then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are Keywords: related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not Ascomycota a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth- Gelasinospora spored Sordaria species (including so-called Asordaria species) constitute a natural group. Neurospora Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora Sordaria species, providing further evidence that non-ostiolate ascomata have evolved from ostio- late ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
New Record of Chaetomium Species Isolated from Soil Under Pineapple Plantation in Thailand
Journal of Agricultural Technology 2008, V.4(2): 91-103 New record of Chaetomium species isolated from soil under pineapple plantation in Thailand C. Pornsuriya1*, F.C. Lin2, S. Kanokmedhakul3and K. Soytong1 1Department of Plant Pest Management Technology, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand. 2College of Agriculture and Biotechnology, Biotechnology Institute, Zhejiang University, Kaixuan Road, Hangzhou 310029, P.R. China. 3Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. Pornsuriya, C., Lin, F.C., Kanokmedhakul, S. and Soytong, K. (2008). New record of Chaetomium species isolated from soil under pineapple plantation in Thailand. Journal of Agricultural Technology 4(2): 91-103. Chaetomium species were isolated from soil in pineapple plantations in Phatthalung and Rayong provinces by soil plate and baiting techniques. Taxonomic study was based on available dichotomously keys and monograph of the genus. Five species are recorded as follows: C. aureum, C. bostrychodes, C. cochliodes, C. cupreum and C. gracile. Another four species are reported to be new records in Thailand as follows: C. carinthiacum, C. flavigenum, C. perlucidum and C. succineum. Key words: Chaetomium, Taxonomic study Introduction Chaetomium is a fungus belonging to Ascomycota of the family Chaetomiaceae which established by Kunze in 1817 (von Arx et al., 1986). Chaetomium Kunze is one of the largest genera of saprophytic ascomycetes which comprise more than 300 species worldwide (von Arx et al., 1986; Soytong and Quimio, 1989; Decock and Hennebert, 1997; Udagawa et al., 1997; Rodríguez et al., 2002). Approximately 20 species have been recorded in Thailand (Table 1). -
Morinagadepsin, a Depsipeptide from the Fungus Morinagamyces Vermicularis Gen. Et Comb. Nov
microorganisms Article Morinagadepsin, a Depsipeptide from the Fungus Morinagamyces vermicularis gen. et comb. nov. Karen Harms 1,2 , Frank Surup 1,2,* , Marc Stadler 1,2 , Alberto Miguel Stchigel 3 and Yasmina Marin-Felix 1,* 1 Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; [email protected] (K.H.); [email protected] (M.S.) 2 Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany 3 Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain; [email protected] * Correspondence: [email protected] (F.S.); [email protected] (Y.M.-F.) Abstract: The new genus Morinagamyces is introduced herein to accommodate the fungus Apiosordaria vermicularis as inferred from a phylogenetic study based on sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and partial fragments of ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Morinagamyces vermicularis was analyzed for the production of secondary metabolites, resulting in the isolation of a new depsipeptide named morinagadepsin (1), and the already known chaetone B (3). While the planar structure of 1 was elucidated by extensive 1D- and 2D-NMR analysis and high-resolution mass spectrometry, the absolute configuration of the building blocks Ala, Val, and Leu was determined as -L by Marfey’s method. The configuration of the 3-hydroxy-2-methyldecanyl unit was assigned as 22R,23R by Citation: Harms, K.; Surup, F.; Stadler, M.; Stchigel, A.M.; J-based configuration analysis and Mosher’s method after partial hydrolysis of the morinagadepsin Marin-Felix, Y. -
Application of Nano-Particles Derived from Chaetomium Elatum Che01 to Control Pyricularia Oryzae Causing Rice Blast
International Journal of Agricultural Technology 2018 Vol. 14(6): 923-932 Available online http://www.ijat-aatsea.com ISSN: 2630-0613 (Print) 2630-0192 (Online) Application of Nano-particles Derived from Chaetomium elatum ChE01 to Control Pyricularia oryzae causing Rice Blast Song, J. J.1*, Kanokmedhakul, S.2, Kanokmedhalkul, K.2 and Soytong, K.1 1Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Ladkrabang, Bangkok, Thailand; 2Department of Chemistry, Faculty of Science, Khon Khan University, Thailand. Song, J. J., Kanokmedhakul, S., Kanokmedhalkul, K. and Soytong, K. (2018). Application of nano-particles derived from Chaetomium elatum ChE01 to control Pyricularia oryzae causing rice blast. International Journal of Agricultural Technology 14(6):923-932. Abstract Pyricularia oryzae causing rice blast was isolated and proved for pathogenicity. Chaetomium elatum ChE01 was proved to be antagonized P. oryzae in bi-culture antagonistic test which averaged inhibition of 60.40 % within 15 days. Fungal metabolites from C. elatum ChE01 were extracted and tested to inhibit P. oryzae. Results showed that crude ethyl acetate expressed antifungal activity against P. oryzae which the effective dose50 (ED50) was 231 ppm., followed by crude methanol and crude hexane which the ED50 were 460 and 2,122 ppm. respectively. It was shown that nano-CCE gave the highest inhibition P. oryzae which the ED50 was 8.25 ppm, and followed by nano-CEM and nano-CEH which the ED50 values were 11.21 and 65.52 ppm, respectively. Further research findings are investigated in pot and field experiments. Keywords: Nano-particles, Chaetomium, Rice Blast Introduction The need to discover the alternative ways to safe human and environment as effective and efficient methods to control plant diseases is desired. -
Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %). -
Culture Inventory
For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1 -
Potential of Microbial Diversity of Coastal Sand Dunes: Need for Exploration in Odisha Coast of India
Hindawi e Scientific World Journal Volume 2019, Article ID 2758501, 9 pages https://doi.org/10.1155/2019/2758501 Review Article Potential of Microbial Diversity of Coastal Sand Dunes: Need for Exploration in Odisha Coast of India Shubhransu Nayak , Satyaranjan Behera, and Prasad Kumar Dash Odisha Biodiversity Board, Regional Plant Resource Centre Campus, Ekamra Kanan, Nayapalli, Bhubaneswar , Odisha, India Correspondence should be addressed to Shubhransu Nayak; [email protected] Received 10 April 2019; Accepted 2 July 2019; Published 14 July 2019 Academic Editor: Jesus L. Romalde Copyright © 2019 Shubhransu Nayak et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Coastal sand dunes are hips and strips formed by sand particles which are eroded and ground rock, derived from terrestrial and oceanic sources. Tis is considered as a specialized ecosystem characterized by conditions which are hostile for life forms like high salt, low moisture, and low organic matter content. However, dunes are also inhabited by diverse groups of fora, fauna, and microorganisms specifcally adapted to these situations. Microbial groups like fungi, bacteria, and actinobacteria are quite abundant in the rhizosphere, phyllosphere, and inside plants which are very much essential for the integration of dunes. Microorganisms in this ecosystem have been found to produce a number of bioactive metabolites which are of great importance to agriculture and industries. Many species of arbuscular mycorrhizal fungi and Rhizobia associated with the roots of dune fora are prolifc producers of plant growth promoting biochemicals like indole acetic acid. -
Collecting and Recording Fungi
British Mycological Society Recording Network Guidance Notes COLLECTING AND RECORDING FUNGI A revision of the Guide to Recording Fungi previously issued (1994) in the BMS Guides for the Amateur Mycologist series. Edited by Richard Iliffe June 2004 (updated August 2006) © British Mycological Society 2006 Table of contents Foreword 2 Introduction 3 Recording 4 Collecting fungi 4 Access to foray sites and the country code 5 Spore prints 6 Field books 7 Index cards 7 Computers 8 Foray Record Sheets 9 Literature for the identification of fungi 9 Help with identification 9 Drying specimens for a herbarium 10 Taxonomy and nomenclature 12 Recent changes in plant taxonomy 12 Recent changes in fungal taxonomy 13 Orders of fungi 14 Nomenclature 15 Synonymy 16 Morph 16 The spore stages of rust fungi 17 A brief history of fungus recording 19 The BMS Fungal Records Database (BMSFRD) 20 Field definitions 20 Entering records in BMSFRD format 22 Locality 22 Associated organism, substrate and ecosystem 22 Ecosystem descriptors 23 Recommended terms for the substrate field 23 Fungi on dung 24 Examples of database field entries 24 Doubtful identifications 25 MycoRec 25 Recording using other programs 25 Manuscript or typescript records 26 Sending records electronically 26 Saving and back-up 27 Viruses 28 Making data available - Intellectual property rights 28 APPENDICES 1 Other relevant publications 30 2 BMS foray record sheet 31 3 NCC ecosystem codes 32 4 Table of orders of fungi 34 5 Herbaria in UK and Europe 35 6 Help with identification 36 7 Useful contacts 39 8 List of Fungus Recording Groups 40 9 BMS Keys – list of contents 42 10 The BMS website 43 11 Copyright licence form 45 12 Guidelines for field mycologists: the practical interpretation of Section 21 of the Drugs Act 2005 46 1 Foreword In June 2000 the British Mycological Society Recording Network (BMSRN), as it is now known, held its Annual Group Leaders’ Meeting at Littledean, Gloucestershire.