Timetable of Celestial Events Through 2020

Total Page:16

File Type:pdf, Size:1020Kb

Timetable of Celestial Events Through 2020 Appendix A Timetable of Celestial Events through 2020 The following pages contain an astronomical almanac for the years 2011 through 2020. Think of it as a “program guide” to the sky. It lists the most observable celes- tial happenings – including the Moon’s phases, lunar and solar eclipses, planetary gatherings and much more – in order of their occurrence. To preview what’s in store for each year, read the year’s highlights preceding each annual listing. To find out what’s happening on a given day, check the nearest date in the almanac. Events discussed or illustrated within the book contain a reference to the page number where you’ll find a diagram or more detailed information. Some events not visible to the naked eye, such as planets in conjunction with the Sun, are included to assist you in understanding when a planet is transitioning from the evening to the morning sky or vice-versa; others, such as Mercury transits and Earth’s extreme distances from the Sun, are included for their intrinsic interest. Throughout the book, we refer to the brightness of the planets and stars by refer- ring to the standard astronomical magnitude scale (detailed in Table 1.1 on page 8 ), usually by giving an object’s magnitude parenthetically after the object’s name – for example, Mars (1.2) or Saturn (−0.3). Keep in mind that the smaller the number, the brighter the object. Venus, the third brightest object in the sky, always has a negative magnitude around −4.0. This is so bright that, when seen in twilight or a dark sky, Venus looks artificial and much closer than it really is. Understanding Time The text refers to time in numerous ways. Some of these references depend on geographic location, while others do not. F. Reddy, Celestial Delights: The Best Astronomical Events through 2020, 303 Patrick Moore’s Practical Astronomy Series, DOI 10.1007/978-1-4614-0610-5, © Springer Science+Business Media, LLC 2012 304 Appendix A Use previous calendar date de of . m m m . a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. p.m. p.m. a.m. a.m. p.m. p.m. p.m. p.m. p.m. p.m. p p.m. p p.m. p p.m. 2 3 4 Hawaii Hawaii (HST) UT– 10 6 5 4 3 2 1 8 Midnight 7 10 9 10 9 1 Noon 8 7 6 5 . m m m . a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. p.m. p.m. a.m. a.m. p.m. p.m. p.m. p.m. p p.m. p p.m. p p.m. p.m. p.m. 3 4 5 Alaska (AKST) UT– 9 7 6 5 4 Midnight 11 3 2 1 8 10 9 10 9 2 Noon 1 11 8 7 6 . m m m . a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. p.m. a.m. p.m. a.m. p.m. p.m. p.m. p.m. p p.m. p p.m. p p.m. p.m. p.m. 4 5 6 Pacific Pacific (PST) UT– 8 8 7 6 5 1 4 Midnight 11 3 2 9 10 10 9 3 Noon 11 1 2 8 7 . m m m . a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. p.m. a.m. p.m. p.m. p.m. p.m. p.m. p p.m. p p.m. p p.m. p.m. p.m. 5 6 7 Mountain (MST) UT– 7 moment of a calendar day 8 7 3 6 2 5 1 Midnight 11 4 10 9 10 9 4 1 Noon 11 2 3 8 . m m m . last a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. p.m. p.m. p.m. p.m. p.m. p.m. p.m. p p.m. p p.m. p p.m. p.m. 6 7 8 Central (CST) UT– 6 8 4 7 3 6 2 1 Midnight 11 5 10 9 10 9 5 2 1 3 4 Noon 11 . m m m . a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. p.m. p.m. p.m. p.m. p.m. p.m. p.m. p.m. p p.m. p p.m. p p.m. 7 8 9 Eastern (EST) UT– 5 5 8 4 7 3 2 1 6 Midnight 11 10 9 10 Noon 11 6 3 2 4 5 1 . m m m Convert universal time to U.S./Canadian standard time zones time to U.S./Canadian standard zones universal Convert . a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. a.m. p p.m. p.m. p.m. p.m. p.m. p.m. p.m. p.m. p.m. p p.m. p p.m. 0 7 8 9 Atlantic (AST) UT– 4 h 1 10 17h 1 16h Noon 11 15h 11 14h 10 10h 6 13h 9 9h 5 12h 8 8h 4 *As used in this book, “midnight” refers to the add one hour to the clock time indicated by this table. Note that neither Arizona (outsi When in effect, Time. Daylight Saving they countries recognize some form of “summer time,” While many Time. Daylight Saving observes Nation) nor Hawaii the Navajo do not necessarily change their clocks on the same dates as U.S. 23h 20h 4 19h 3 7h 3 6h 2 11h 7 21h 22h 5 6 18h 2 Table Table A.1 UT 0h 1h 2h 5h 1 4h Midnight* 11 3h 11 Understanding Time 305 Horizon scenes. Illustrations throughout the book show the changing positions of the Moon and planets as seen by observers in the United States and southern Canada at the times and dates noted in the captions. For observers elsewhere in the Northern Hemisphere at similar latitudes, roughly between 25° and 55° N, the scenes approximate what’s in the sky, although details of altitude and position will vary – especially visibility around dawn and dusk. Similarly, notes in this almanac that instruct you to look a specific time before sunrise or after sunset on a given calendar date are correct for observers in the United States and southern Canada. Star maps. The all-sky star maps illustrate the constellations as they appear at the times on your clock – that is, your local time – and even include the annual “Spring forward/fall back” changes of Daylight Saving Time. The dates of these clock changes, which are also noted in the almanac, follow the revised U.S. rules that went into effect in 2007. If your area does not recognize daylight time, then between March and November the star charts will be one hour ahead. Just make a note to look an hour earlier than indicated. Event listings. Some celestial events, such as conjunctions, lunar phases or eclipses, occur at specific times, whether or not North America is in darkness or pointed the right way to see them. For example, the most frequent event listings are conjunctions of the Moon with stars and planets, such as “Moon passes 1.5° south of Jupiter, 1 p.m. EST.” It may at first seem strange to include a conjunction that occurs in the afternoon, when Jupiter cannot be seen. What this is really saying: When you see the Moon in a dark sky on that date, Jupiter won’t be far away. Universal time. The traditional method for communicating the time of a celestial happening is to use Universal Time (UT), which for our purposes is identical to Coordinated Universal Time (UTC), the clock time on the meridian that runs through Greenwich, England (also known as Greenwich Mean Time). With the exception of eclipses and transits, the book gives UT times that are uncorrected for irregularities in Earth’s rotation, which astronomers estimate will not exceed 1.2 min by 2021. For lunar phases, oppositions, equinoxes and solstices, and Earth’s closest and farthest positions from the Sun, times are rounded to the nearest minute. Times for eclipses and transits, also rounded to the nearest minute, are based on predictions by astronomer Fred Espenak at NASA’s Goddard Space Flight Center. Less time-critical events are rounded to the nearest hour. For meteor showers, unless otherwise noted, the almanac gives the hour when Earth passes closest to the orbit of the shower’s parent body. The best viewing normally occurs during the hours after midnight closest to this time, although interference from the moon and specific shower behavior also come into play. While we’re most familiar with a 12-h clock, UT uses a 24-hr clock, where midnight, noon, and 6 p.m. become 0h, 12h, and 18h, respectively. To convert UT times to clock times at your location, you must add or subtract some number of hours, then switch from the 24-h UT clock to the 12-h format used by civil time. If the time shift passes midnight, the sky event may occur on a different calendar date than the one listed – and if you’re not mindful of that, you may miss the event.
Recommended publications
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Vol. 47, No. 2 June 2018 a New Star Appears in Europe Page 14 Journal
    Online PDF: ISSN 233333-9063 Vol. 47, No. 2 June 2018 Journal of the International Planetarium Society A New Star Appears in Europe Page 14 Reach for the stars... and beyond. ZEISS powerdome IV // INSPIRATION MADE BY ZEISS True Hybrid with brilliant stars and perfect renderings from a single source ZEISS powerdome IV brings many new features to your star theater: an integrated planetarium for earthbound and extraterrestrial astronomy with seamless transitions between optical and digital star fields (True Hybrid) | The universe from Earth via the solar system and Milky Way galaxy to the very edge of the observable space | Stereo projection | 8k performance | 10 bit color depth for smooth gradients | HEVC codec for efficient video renderings free of artifacts | All constellation figures, individually and in groups without any mutual overlapping | Telescope function for deep-sky imagery applying Astronomy Visualization Metadata | Complete image set of all Messier objects | Customizable polar lights, comets with gas and dust tails, and shooting stars with a great variety of parameters for location, brightness, colors and appearance | Simulation of day and night with dusk and dawn coloring of sky and panorama images | Customizable weather effects such as clouds, rain, fog, snow, rainbow, halos, air and light pollution effects | Digital rights management to secure your productions | Remote service for quick help, and much more from the only company serving planetariums for nearly a century. www.zeiss.com/planetariums zeiss-ad_pdIV_letter_x3.indd
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • My Catv Lucena Channel Guide
    My Catv Lucena Channel Guide Uncrowded and sky-high Roberto tiptoed some spelt so stellately! Curdy Dennie always court-martial outinghis thinning invalidly, if Phillip but girlyis locomobile Julian battle or authorizefeignedly documentarily.or rewords contrary. Sometimes waspier Rinaldo bonnets her Download My Catv Lucena Channel Guide pdf. Download My Catv Lucena Channel Guide doc. Whole channelpoint of optionsguide to in all my channels catv lucena to a channelshow. Destination guide button for onconsolidated the new channels? lucena channel Gets updated guide options on lucena for inthe my channel catv guide lineups for listedverifiying are youralso availableemail, and in showtime the popular anytime movies. anywhere Bold original on the programming criterion channel? available channels?Age of requests High speedfrom catv and guide tv guide, options and forlive hd, tv iswe not, currently on the do chi, not the a healthplethora and of thehartford, criterion that channel some internet.lineups listed Helping are usup. by Premium address channels from catv you lucena in my channel lucena is customer epix with portal each andwith componentthe hd. Comfort video of and computer,requests from including catv serves friends the and curated the programming. channels require Reverse an additionalthe channels charge in my for lucena each companychannel guide list or is yukonon your tv zip to youcode to to you curl can up clickon premium on the audiences movie channels who pull subject you can to. Vermontkeep your and email. to use Service my guide to to editingeverything your from cooperation catv lucena in all channel access lineups for fios inand our the use programming? of options in willPortal return and error to use searching my catv bychannel oris talkingfilling in about all devices service and at thatmore information information about below tv.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • Consecutive Midnight Shifts
    Fatigue and Shiftwork: Consecutive Midnight Shifts Why is it so hard to work midnight shifts (“Mids”)? In a 24/7 operation, mids are unavoidable. It is what it is. The challenge is that you have to be alert when your circadian clock (internal body clock) is programmed to sleep. To prepare for a mid, you need to sleep in the daytime when your body clock is on alarm (resisting sleep). Working mids disrupts your sleep pattern which may lead to an increase in sleep debt (accumulation of getting less sleep than you need). Performance and alertness levels decrease with each passing day of shortened sleep. But what about consecutive mids? Are consecutive mids more fatiguing than working a single mid? Yes, because the more mids in a row, the larger the sleep debt, and the tougher the recovery. With one mid, sleep debt is acute and recovery (making up sleep by sleeping more on days off) is possible. With consecutive mids, sleep debt becomes chronic and recovery may require multiple full nights of recuperative sleep. Does working consecutive mid shifts affect performance and alertness? Yes. If you work a schedule associated with reduced opportunities for night time recovery sleep, that loss increases the likelihood of decrements in both work performance and alertness. These decrements are exponential during early morning hours when your body clock is at its lowest (around 0300-0500) and you naturally have the urge to sleep. It is scientifically proven that: • Incident/accident risk increases significantly on the 3rd and 4th consecutive mid shift
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • Morphology and Dynamics of the Venus Atmosphere at the Cloud Top Level As Observed by the Venus Monitoring Camera
    Morphology and dynamics of the Venus atmosphere at the cloud top level as observed by the Venus Monitoring Camera Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Richard Moissl aus Grünstadt Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Jürgen Blum 2. Referentin oder Referent: Dr. Horst-Uwe Keller eingereicht am: 24. April 2008 mündliche Prüfung (Disputation) am: 9. Juli 2008 ISBN 978-3-936586-86-2 Copernicus Publications, Katlenburg-Lindau Druck: Schaltungsdienst Lange, Berlin Printed in Germany Contents Summary 7 1 Introduction 9 1.1 Historical observations of Venus . .9 1.2 The atmosphere and climate of Venus . .9 1.2.1 Basic composition and structure of the Venus atmosphere . .9 1.2.2 The clouds of Venus . 11 1.2.3 Atmospheric dynamics at the cloud level . 12 1.3 Venus Express . 16 1.4 Goals and structure of the thesis . 19 2 The Venus Monitoring Camera experiment 21 2.1 Scientific objectives of the VMC in the context of this thesis . 21 2.1.1 UV Channel . 21 2.1.1.1 Morphology of the unknown UV absorber . 21 2.1.1.2 Atmospheric dynamics of the cloud tops . 21 2.1.2 The two IR channels . 22 2.1.2.1 Water vapor abundance and cloud opacity . 22 2.1.2.2 Surface and lower atmosphere .
    [Show full text]
  • Flex Parking the Less You Park, the Less You Pay
    Flex Parking The less you park, the less you pay. PARKING PAYMENT EXAMPLES How It Works • You pay the rate in effect at the time you arrive. If your parking session bridges two different rate periods, you begin under the rate of the period that you arrived and pay that rate for either the first four hours (if you arrive within four hours BEFORE the rate changes) OR the first hour (if you arrive more than four hours BEFORE the rate changes). • Hours are counted from the minute that you arrive (for example 9:12am to 10:12am). • Parking is charged by the hour, there is no prorated amount for periods of less than an hour. You cannot pay for a portion of an hour. • Those who start parking M-F at 4:30pm or after (or anytime on Sat/Sun) will pay no more than $3.75. • Those who start parking M-F at 4:29pm or before will pay no more than $8. Examples 1. You arrive at 4:29pm and remain parked until midnight (or after). In the example below neither the daytime limit ($8) nor the nighttime limit ($3.75) are reached. Number Cumulative Time Period Rate in Effect of Hours Charge 4:29 to 8:29pm 4 $4 under daytime rate trip charge $4 8:29 to 11:29pm 3 $0.75 per hour for 3 hours under $6.25 nighttime rate (total $2.25) 11:29pm to 31 $0.75 for the portion of an hour parked $7 midnight minutes TOTAL CHARGE 7.5 $7 ($4 under daytime rate and $3 under $7 evening rate) 2.
    [Show full text]
  • The Sky Above Mr. Rogers' Neighborhood Teacher's Guide
    Layout 5.3.01 1/29/02 2:03 PM Page 2 Teacher’s Guide Henry Buhl, Jr. Planetarium & Observatory Layout 5.3.01 1/29/02 2:03 PM Page 3 4802 Fifth Avenue Pittsburgh, PA 15213 One Allegheny Avenue Pittsburgh, PA 15212-5850 Carnegie Science Center is fully accessible to persons with disabilities. The submarine requires full physical mobility. Carnegie Science Center understands, respects and values physical, cultural, economic and social differences among our visitors and staff. Call 412.237.1535 for updated information or check our website at www.CarnegieScienceCenter.org. © 2001 Carnegie Science Center/Family Communications. Educators and educational institutions may reproduce portions of this docu- ment for nonprofit purposes, with proper attribution to Carnegie Science Center and Family Communications. No portion of the document may be used for any commercial applications without express permission from Carnegie Science Center. Please direct inquiries to Buhl Planetarium, Carnegie Science Center, One Allegheny Avenue, Pittsburgh, PA 15212. Layout 5.3.01 1/29/02 2:03 PM Page 4 The Sky Above Introduction Mister Rogers’ Neighborhood We live in a magnificent universe! We are surrounded by its wonders. They was developed by are beneath our feet, in the air we breathe and, of course, in the sky above our heads. There is so much to explore and to enjoy! Carnegie Science Center and Family Communications, Inc. Those of us at Carnegie Science Center believe that our lives are enriched when we take the time to learn about all of these things that make up our This project was made possible with a generous “neighborhood”.
    [Show full text]